Knowledge Graph Embedding: An Overview
- URL: http://arxiv.org/abs/2309.12501v1
- Date: Thu, 21 Sep 2023 21:52:42 GMT
- Title: Knowledge Graph Embedding: An Overview
- Authors: Xiou Ge, Yun-Cheng Wang, Bin Wang, C.-C. Jay Kuo
- Abstract summary: We make a comprehensive overview of the current state of research in Knowledge Graph completion.
We focus on two main branches of KG embedding (KGE) design: 1) distance-based methods and 2) semantic matching-based methods.
Next, we delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D affine operations.
- Score: 42.16033541753744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many mathematical models have been leveraged to design embeddings for
representing Knowledge Graph (KG) entities and relations for link prediction
and many downstream tasks. These mathematically-inspired models are not only
highly scalable for inference in large KGs, but also have many explainable
advantages in modeling different relation patterns that can be validated
through both formal proofs and empirical results. In this paper, we make a
comprehensive overview of the current state of research in KG completion. In
particular, we focus on two main branches of KG embedding (KGE) design: 1)
distance-based methods and 2) semantic matching-based methods. We discover the
connections between recently proposed models and present an underlying trend
that might help researchers invent novel and more effective models. Next, we
delve into CompoundE and CompoundE3D, which draw inspiration from 2D and 3D
affine operations, respectively. They encompass a broad spectrum of techniques
including distance-based and semantic-based methods. We will also discuss an
emerging approach for KG completion which leverages pre-trained language models
(PLMs) and textual descriptions of entities and relations and offer insights
into the integration of KGE embedding methods with PLMs for KG completion.
Related papers
- Knowledge Graph Completion using Structural and Textual Embeddings [0.0]
We propose a relations prediction model that harnesses both textual and structural information within Knowledge Graphs.
Our approach integrates walks-based embeddings with language model embeddings to effectively represent nodes.
We demonstrate that our model achieves competitive results in the relation prediction task when evaluated on a widely used dataset.
arXiv Detail & Related papers (2024-04-24T21:04:14Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
Knowledge graph reasoning (KGR) aims to deduce new facts from existing facts based on mined logic rules underlying knowledge graphs (KGs)
It has been proven to significantly benefit the usage of KGs in many AI applications, such as question answering, recommendation systems, and etc.
arXiv Detail & Related papers (2022-12-12T08:40:04Z) - Few-Shot Inductive Learning on Temporal Knowledge Graphs using
Concept-Aware Information [31.10140298420744]
We propose a few-shot out-of-graph (OOG) link prediction task for temporal knowledge graphs (TKGs)
We predict the missing entities from the links concerning unseen entities by employing a meta-learning framework.
Our model achieves superior performance on all three datasets.
arXiv Detail & Related papers (2022-11-15T14:23:07Z) - What is Learned in Knowledge Graph Embeddings? [3.224929252256631]
A knowledge graph (KG) is a data structure which represents entities and relations as the vertices and edges of a directed graph with edge types.
We investigate whether learning rules between relations is indeed what drives the performance of embedding-based methods.
Using experiments on synthetic KGs, we show that KG models can learn motifs and how this ability is degraded by non-motif edges.
arXiv Detail & Related papers (2021-10-19T13:52:11Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - PPKE: Knowledge Representation Learning by Path-based Pre-training [43.41597219004598]
We propose a Path-based Pre-training model to learn Knowledge Embeddings, called PPKE.
Our model achieves state-of-the-art results on several benchmark datasets for link prediction and relation prediction tasks.
arXiv Detail & Related papers (2020-12-07T10:29:30Z) - Knowledge Graph Embeddings in Geometric Algebras [14.269860621624392]
We introduce a novel geometric algebra-based KG embedding framework, GeomE.
Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns.
Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
arXiv Detail & Related papers (2020-10-02T13:36:24Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
Commonsense knowledge graphs (CKGs) like Atomic and ASER are substantially different from conventional KGs.
We introduce to CKG construction methods conceptualization to view entities mentioned in text as instances of specific concepts or vice versa.
Our methods can effectively identify plausible triples and expand the KG by triples of both new nodes and edges of high diversity and novelty.
arXiv Detail & Related papers (2020-03-06T14:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.