論文の概要: Step Differences in Instructional Video
- arxiv url: http://arxiv.org/abs/2404.16222v1
- Date: Wed, 24 Apr 2024 21:49:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 15:17:42.284009
- Title: Step Differences in Instructional Video
- Title(参考訳): インストラクショナルビデオにおけるステップ差
- Authors: Tushar Nagarajan, Lorenzo Torresani,
- Abstract要約: 本論文では,HowTo100Mから一対の動画を含む視覚的インストラクション・チューニングデータを生成する手法を提案する。
次に、ビデオ条件付き言語モデルをトレーニングして、複数の生のビデオに共同で理由付けします。
本モデルでは,これらの違いの重大さに基づいて,映像ペアとランキングビデオの差分を同定し,最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 34.551572600535565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Comparing a user video to a reference how-to video is a key requirement for AR/VR technology delivering personalized assistance tailored to the user's progress. However, current approaches for language-based assistance can only answer questions about a single video. We propose an approach that first automatically generates large amounts of visual instruction tuning data involving pairs of videos from HowTo100M by leveraging existing step annotations and accompanying narrations, and then trains a video-conditioned language model to jointly reason across multiple raw videos. Our model achieves state-of-the-art performance at identifying differences between video pairs and ranking videos based on the severity of these differences, and shows promising ability to perform general reasoning over multiple videos.
- Abstract(参考訳): ユーザビデオと参照ハウツービデオを比較することは、ユーザの進捗に合わせてパーソナライズされたアシストを提供するAR/VR技術にとって重要な要件である。
しかし、言語ベースの支援に対する現在のアプローチは、単一のビデオに関する質問に答えることしかできない。
本論文では,まず,既存のステップアノテーションと付随するナレーションを活用することで,ハウト100Mからビデオのペアを含む大量の視覚的チューニングデータを自動生成し,さらにビデオ条件付き言語モデルを訓練して,複数の生動画を共同で解析する手法を提案する。
本モデルでは,これらの違いの重大さに基づいて,ビデオペアとランキングビデオの差分を同定し,複数のビデオに対して一般的な推論を行うための有望な能力を示す。
関連論文リスト
- Needle In A Video Haystack: A Scalable Synthetic Evaluator for Video MLLMs [20.168429351519055]
ビデオ理解はマルチモーダル大言語モデル(LMLM)にとって重要な次のステップである
合成ビデオ生成によるベンチマーク構築フレームワークであるVideoNIAH(Video Needle In A Haystack)を提案する。
我々は、プロプライエタリモデルとオープンソースモデルの両方を包括的に評価し、ビデオ理解能力の重大な違いを明らかにする。
論文 参考訳(メタデータ) (2024-06-13T17:50:05Z) - InternVideo2: Scaling Foundation Models for Multimodal Video Understanding [51.129913789991924]
InternVideo2は、ビデオファウンデーションモデル(FM)の新たなファミリーで、ビデオ認識、ビデオ音声タスク、ビデオ中心タスクの最先端の結果を達成する。
私たちのコアデザインは、マスク付きビデオモデリング、クロスコントラスト学習、予測トークンを統合し、最大6Bビデオサイズまでスケールアップするプログレッシブトレーニングアプローチです。
論文 参考訳(メタデータ) (2024-03-22T17:57:42Z) - Beyond the Frame: Single and mutilple video summarization method with
user-defined length [4.424739166856966]
ビデオの要約は難しいが重要な作業であり、さらなる研究と開発にかなりの可能性がある。
本稿では,NLP技術とビデオ処理技術を組み合わせて,長い動画を比較的短いビデオに変換する。
論文 参考訳(メタデータ) (2023-12-23T04:32:07Z) - VIDiff: Translating Videos via Multi-Modal Instructions with Diffusion
Models [96.55004961251889]
Video Instruction Diffusion (VIDiff) は、幅広いビデオタスク用に設計された統合基盤モデルである。
我々のモデルは,ユーザの指示に基づいて,所望の結果を数秒以内に編集し,翻訳することができる。
様々な入力ビデオや書き起こしに対して,質的かつ定量的に,説得力のある生成結果を提供する。
論文 参考訳(メタデータ) (2023-11-30T18:59:52Z) - InternVideo: General Video Foundation Models via Generative and
Discriminative Learning [52.69422763715118]
動的および複雑なビデオレベルの理解タスクのための一般的なビデオ基盤モデルであるInternVideoを提案する。
InternVideoは、事前学習対象として、マスク付きビデオモデリングとビデオ言語コントラスト学習を効率的に探索する。
InternVideoは、ビデオアクション認識/検出、ビデオ言語アライメント、オープンワールドビデオアプリケーションなど、39のビデオデータセットの最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-12-06T18:09:49Z) - Video Question Answering with Iterative Video-Text Co-Tokenization [77.66445727743508]
本稿では,ビデオ質問応答のための新しいマルチストリームビデオエンコーダを提案する。
実験により,MSRVTT-QA,MSVD-QA,IVQAなどの複数のデータセットでモデルを評価する。
本稿では,必要なGFLOPを150-360から67に削減し,高効率なビデオ質問応答モデルを構築した。
論文 参考訳(メタデータ) (2022-08-01T15:35:38Z) - VALUE: A Multi-Task Benchmark for Video-and-Language Understanding
Evaluation [124.02278735049235]
VALUEベンチマークは、幅広いビデオジャンル、ビデオの長さ、データボリューム、タスクの難易度をカバーすることを目的としている。
大規模なVidL事前学習による各種ベースライン法の評価を行った。
我々の最高のモデルと人間のパフォーマンスの間の大きなギャップは、先進的なVidLモデルの将来の研究を要求する。
論文 参考訳(メタデータ) (2021-06-08T18:34:21Z) - Less is More: ClipBERT for Video-and-Language Learning via Sparse
Sampling [98.41300980759577]
ビデオと言語の学習に対する標準的なアプローチは、オフラインで抽出された高密度ビデオ機能から学習するニューラルネットワークを規定する。
本稿では,ビデオ・言語タスクに対して,手頃なエンドツーエンド学習を可能にする汎用フレームワークClipBERTを提案する。
6つのデータセットにおけるテキスト・ビデオ検索とビデオ質問応答の実験は、ClipBERTが既存の手法より優れていることを示した。
論文 参考訳(メタデータ) (2021-02-11T18:50:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。