論文の概要: AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
- arxiv url: http://arxiv.org/abs/2404.16233v2
- Date: Tue, 30 Apr 2024 21:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-02 17:35:46.989214
- Title: AutoGluon-Multimodal (AutoMM): Supercharging Multimodal AutoML with Foundation Models
- Title(参考訳): AutoGluon-Multimodal (AutoMM): ファンデーションモデルによるマルチモーダルオートMLのスーパーチャージ
- Authors: Zhiqiang Tang, Haoyang Fang, Su Zhou, Taojiannan Yang, Zihan Zhong, Tony Hu, Katrin Kirchhoff, George Karypis,
- Abstract要約: AutoMMは、わずか3行のコードで基礎モデルの微調整を可能にする。
AutoMMは、分類、回帰、オブジェクト検出、セマンティックマッチング、イメージセグメンテーションにまたがる、包括的な機能スイートを提供する。
- 参考スコア(独自算出の注目度): 31.816755598468077
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AutoGluon-Multimodal (AutoMM) is introduced as an open-source AutoML library designed specifically for multimodal learning. Distinguished by its exceptional ease of use, AutoMM enables fine-tuning of foundation models with just three lines of code. Supporting various modalities including image, text, and tabular data, both independently and in combination, the library offers a comprehensive suite of functionalities spanning classification, regression, object detection, semantic matching, and image segmentation. Experiments across diverse datasets and tasks showcases AutoMM's superior performance in basic classification and regression tasks compared to existing AutoML tools, while also demonstrating competitive results in advanced tasks, aligning with specialized toolboxes designed for such purposes.
- Abstract(参考訳): AutoGluon-Multimodal(AutoMM)は、マルチモーダル学習に特化したオープンソースのAutoMLライブラリとして導入された。
非常に使いやすく、AutoMMは、わずか3行のコードで基礎モデルの微調整を可能にする。
画像、テキスト、および表データを含む様々なモダリティをサポートするため、ライブラリは、分類、回帰、オブジェクト検出、セマンティックマッチング、イメージセグメンテーションにまたがる、包括的な機能スイートを提供する。
さまざまなデータセットやタスクにわたる実験では、既存のAutoMLツールと比較して、基本的な分類や回帰タスクにおけるAutoMMの優れたパフォーマンスを示すと同時に、高度なタスクにおける競合結果を示し、そのような目的のために設計された特殊なツールボックスと整合する。
関連論文リスト
- AutoML-Agent: A Multi-Agent LLM Framework for Full-Pipeline AutoML [56.565200973244146]
自動機械学習(Automated Machine Learning, ML)は、開発パイプライン内のタスクを自動化することによって、AI開発を加速する。
近年の作業では,そのような負担を軽減するために,大規模言語モデル(LLM)の利用が始まっている。
本稿では,フルパイプのAutoMLに適した新しいマルチエージェントフレームワークであるAutoML-Agentを提案する。
論文 参考訳(メタデータ) (2024-10-03T20:01:09Z) - AutoM3L: An Automated Multimodal Machine Learning Framework with Large Language Models [6.496539724366041]
本稿では,革新的マルチモーダル機械学習フレームワークAutoM3Lを紹介する。
AutoM3Lはデータモダリティを理解し、ユーザ要求に基づいて適切なモデルを選択する。
6つの多様なマルチモーダルデータセット上でのAutoM3Lの性能評価を行った。
論文 参考訳(メタデータ) (2024-08-01T16:01:51Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
本稿では,視覚的特徴を大規模多モードモデルの語彙上の確率分布にマッピングする視覚トークンの概念を提案する。
さらに、LMM内の意味空間における視覚的特徴の分布と、視覚情報を表現するためにテキスト埋め込みを使用することの可能性について検討する。
論文 参考訳(メタデータ) (2024-03-12T14:58:52Z) - AutoMMLab: Automatically Generating Deployable Models from Language
Instructions for Computer Vision Tasks [39.71649832548044]
AutoMMLabは、ユーザの言語命令に従う汎用LLMベースのAutoMLシステムである。
提案する AutoMMLab システムは,AutoML と OpenMMLab コミュニティを結ぶブリッジとして LLM を効果的に利用している。
実験の結果、AutoMMLabシステムは汎用的で、さまざまなメインストリームタスクをカバーしています。
論文 参考訳(メタデータ) (2024-02-23T14:38:19Z) - AutoAct: Automatic Agent Learning from Scratch for QA via Self-Planning [54.47116888545878]
AutoActはQAのための自動エージェント学習フレームワークである。
大規模アノテートデータやクローズドソースモデルからの合成計画軌道は依存していない。
論文 参考訳(メタデータ) (2024-01-10T16:57:24Z) - Mining Robust Default Configurations for Resource-constrained AutoML [18.326426020906215]
本稿では,オフラインのAutoMLを実行し,多様なタスクに対してマイニングを行うことにより,与えられたタスクに対するパフォーマンス設定を選択する新しい方法を提案する。
当社のアプローチは,既存のAutoMLプラットフォームを温める上で有効であることを示す。
論文 参考訳(メタデータ) (2022-02-20T23:08:04Z) - Merlion: A Machine Learning Library for Time Series [73.46386700728577]
Merlionは時系列のためのオープンソースの機械学習ライブラリである。
モデルの統一インターフェースと、異常検出と予測のためのデータセットを備えている。
Merlionはまた、本番環境でのモデルのライブデプロイメントと再トレーニングをシミュレートするユニークな評価フレームワークも提供する。
論文 参考訳(メタデータ) (2021-09-20T02:03:43Z) - Automatic Componentwise Boosting: An Interpretable AutoML System [1.1709030738577393]
本稿では,高度にスケーラブルなコンポーネントワイドブースティングアルゴリズムを用いて適用可能な,解釈可能な付加モデルを構築するAutoMLシステムを提案する。
我々のシステムは、部分的な効果やペアの相互作用を可視化するなど、簡単なモデル解釈のためのツールを提供する。
解釈可能なモデル空間に制限があるにもかかわらず、我々のシステムは、ほとんどのデータセットにおける予測性能の点で競争力がある。
論文 参考訳(メタデータ) (2021-09-12T18:34:33Z) - Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and
Robust AutoDL [53.40030379661183]
Auto-PyTorchは、完全に自動化されたディープラーニング(AutoDL)を実現するフレームワーク
ディープニューラルネットワーク(DNN)のウォームスタートとアンサンブルのためのマルチフィデリティ最適化とポートフォリオ構築を組み合わせる。
Auto-PyTorchは、いくつかの最先端の競合製品よりもパフォーマンスが良いことを示す。
論文 参考訳(メタデータ) (2020-06-24T15:15:17Z) - AutoGluon-Tabular: Robust and Accurate AutoML for Structured Data [120.2298620652828]
オープンソースのAutoMLフレームワークであるAutoGluon-Tabularを紹介します。
KaggleとOpenML AutoML Benchmarkの50の分類および回帰タスクからなるスイートのテストによると、AutoGluonはより速く、より堅牢で、はるかに正確である。
論文 参考訳(メタデータ) (2020-03-13T23:10:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。