Style Adaptation for Domain-adaptive Semantic Segmentation
- URL: http://arxiv.org/abs/2404.16301v1
- Date: Thu, 25 Apr 2024 02:51:55 GMT
- Title: Style Adaptation for Domain-adaptive Semantic Segmentation
- Authors: Ting Li, Jianshu Chao, Deyu An,
- Abstract summary: Domain discrepancy leads to a significant decrease in the performance of general network models trained on the source domain data when applied to the target domain.
We introduce a straightforward approach to mitigate the domain discrepancy, which necessitates no additional parameter calculations and seamlessly integrates with self-training-based UDA methods.
Our proposed method attains a noteworthy UDA performance of 76.93 mIoU on the GTA->Cityscapes dataset, representing a notable improvement of +1.03 percentage points over the previous state-of-the-art results.
- Score: 2.1365683052370046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) refers to the method that utilizes annotated source domain data and unlabeled target domain data to train a model capable of generalizing to the target domain data. Domain discrepancy leads to a significant decrease in the performance of general network models trained on the source domain data when applied to the target domain. We introduce a straightforward approach to mitigate the domain discrepancy, which necessitates no additional parameter calculations and seamlessly integrates with self-training-based UDA methods. Through the transfer of the target domain style to the source domain in the latent feature space, the model is trained to prioritize the target domain style during the decision-making process. We tackle the problem at both the image-level and shallow feature map level by transferring the style information from the target domain to the source domain data. As a result, we obtain a model that exhibits superior performance on the target domain. Our method yields remarkable enhancements in the state-of-the-art performance for synthetic-to-real UDA tasks. For example, our proposed method attains a noteworthy UDA performance of 76.93 mIoU on the GTA->Cityscapes dataset, representing a notable improvement of +1.03 percentage points over the previous state-of-the-art results.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - Transcending Domains through Text-to-Image Diffusion: A Source-Free
Approach to Domain Adaptation [6.649910168731417]
Domain Adaptation (DA) is a method for enhancing a model's performance on a target domain with inadequate annotated data.
We propose a novel framework for SFDA that generates source data using a text-to-image diffusion model trained on the target domain samples.
arXiv Detail & Related papers (2023-10-02T23:38:17Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
This paper presents an unsupervised domain adaptation (UDA) method for predicting unlabeled target domain data.
We propose the Adversarial self-superVised domain Adaptation network for the TARget domain (AVATAR) algorithm.
Our proposed model significantly outperforms state-of-the-art methods on three UDA benchmarks.
arXiv Detail & Related papers (2023-04-28T20:31:56Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
Domain Adaptation aims to transfer the knowledge learned from a labeled source domain to an unlabeled target domain whose data distributions are different.
Recently, Source-Free Domain Adaptation (SFDA) has drawn much attention, which tries to tackle domain adaptation problem without using source data.
In this work, we propose a novel framework called SFDA-DE to address SFDA task via source Distribution Estimation.
arXiv Detail & Related papers (2022-04-24T12:22:19Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
Unsupervised Domain Adaptation (UDA) is an effective approach to tackle the issue of domain shift.
UDA methods try to align the source and target representations to improve the generalization on the target domain.
The Source-Free Adaptation Domain (SFDA) setting aims to alleviate these concerns by adapting a source-trained model for the target domain without requiring access to the source data.
arXiv Detail & Related papers (2022-03-29T17:50:43Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Gradual Domain Adaptation via Self-Training of Auxiliary Models [50.63206102072175]
Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
arXiv Detail & Related papers (2021-06-18T03:15:25Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) adapts a given pre-trained model to an unseen target domain.
We partially adapt the normalization layer statistics to the target domain using an exponentially decaying momentum factor.
Compared to standard UDA approaches we report a trade-off between performance and usage of source domain representations.
arXiv Detail & Related papers (2020-11-17T08:37:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.