論文の概要: Don't Say No: Jailbreaking LLM by Suppressing Refusal
- arxiv url: http://arxiv.org/abs/2404.16369v1
- Date: Thu, 25 Apr 2024 07:15:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:38:43.556041
- Title: Don't Say No: Jailbreaking LLM by Suppressing Refusal
- Title(参考訳): LLMのジェイルブレイクは拒否を抑える
- Authors: Yukai Zhou, Wenjie Wang,
- Abstract要約: 大規模言語モデル(LLM)は、"jailbreaking"攻撃に対して脆弱である。
ジェイルブレイク攻撃の1つのカテゴリは、LDMを誘導して肯定的な反応を生成することで敵攻撃としてタスクを再編成することである。
本研究はDSN(Don't Say No)攻撃を導入し、LDMが肯定的な反応を発生させるだけでなく、拒絶を抑える目的を新たに強化する。
- 参考スコア(独自算出の注目度): 6.86204821852287
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring the safety alignment of Large Language Models (LLMs) is crucial to generating responses consistent with human values. Despite their ability to recognize and avoid harmful queries, LLMs are vulnerable to "jailbreaking" attacks, where carefully crafted prompts elicit them to produce toxic content. One category of jailbreak attacks is reformulating the task as adversarial attacks by eliciting the LLM to generate an affirmative response. However, the typical attack in this category GCG has very limited attack success rate. In this study, to better study the jailbreak attack, we introduce the DSN (Don't Say No) attack, which prompts LLMs to not only generate affirmative responses but also novelly enhance the objective to suppress refusals. In addition, another challenge lies in jailbreak attacks is the evaluation, as it is difficult to directly and accurately assess the harmfulness of the attack. The existing evaluation such as refusal keyword matching has its own limitation as it reveals numerous false positive and false negative instances. To overcome this challenge, we propose an ensemble evaluation pipeline incorporating Natural Language Inference (NLI) contradiction assessment and two external LLM evaluators. Extensive experiments demonstrate the potency of the DSN and the effectiveness of ensemble evaluation compared to baseline methods.
- Abstract(参考訳): 大きな言語モデル(LLM)の安全性の確保は、人間の値に整合した応答を生成する上で不可欠である。
有害なクエリを認識して回避する能力があるにもかかわらず、LSMは「ジェイルブレイク」攻撃に対して脆弱であり、慎重にプロンプトを作れば有害なコンテンツを生み出すことができる。
ジェイルブレイク攻撃の1つのカテゴリは、LDMを誘導して肯定的な応答を生成することで、敵攻撃としてタスクを再編成することである。
しかし、このカテゴリの典型的な攻撃GCGは攻撃成功率に非常に制限がある。
本研究では,脱獄攻撃についてより深く研究するため,DSN(Don't Say No)攻撃を導入した。
加えて、ジェイルブレイク攻撃のもう一つの課題は、攻撃の有害性を直接的かつ正確に評価することが困難であるため、評価である。
Refusalキーワードマッチングのような既存の評価は、多くの偽陽性および偽陰性インスタンスを示すため、独自の制限がある。
この課題を克服するために,自然言語推論(NLI)と2つの外部LCM評価器を組み合わせたアンサンブル評価パイプラインを提案する。
大規模な実験では, DSNの有効性とアンサンブル評価の有効性がベースライン法と比較された。
関連論文リスト
- The VLLM Safety Paradox: Dual Ease in Jailbreak Attack and Defense [56.32083100401117]
本稿では,視覚大言語モデル (VLLM) がジェイルブレイク攻撃のリスクが高い理由を考察する。
既存の防御機構は、テキストバウンド・プルーデンスの問題に悩まされる。
ジェイルブレイクの2つの代表的な評価手法は、しばしばチャンス合意を示す。
論文 参考訳(メタデータ) (2024-11-13T07:57:19Z) - A Realistic Threat Model for Large Language Model Jailbreaks [87.64278063236847]
本研究では,ジェイルブレイク攻撃の原理的比較のための統一的脅威モデルを提案する。
私たちの脅威モデルは、パープレキシティの制約を組み合わせることで、ジェイルブレイクが自然のテキストからどれだけ逸脱するかを測定します。
我々は、この新しい現実的な脅威モデルに人気のある攻撃を適用する。
論文 参考訳(メタデータ) (2024-10-21T17:27:01Z) - Root Defence Strategies: Ensuring Safety of LLM at the Decoding Level [10.658844160259104]
大規模言語モデル (LLM) は様々な産業で大きな有用性を示している。
LLMが進むにつれて、不正または悪意のある命令プロンプトによって有害な出力のリスクが増大する。
本稿では, LLMが有害な出力を認識する能力について検討し, 従来のトークンの危険性を評価する能力を明らかにし, 定量化する。
論文 参考訳(メタデータ) (2024-10-09T12:09:30Z) - Detecting AI Flaws: Target-Driven Attacks on Internal Faults in Language Models [27.397408870544453]
大規模言語モデル(LLM)は、人工知能の急速に発展する分野において焦点となっている。
重要な懸念は、これらのモデルの事前学習コーパス内に有毒な物質が存在することであり、不適切な出力が発生する可能性がある。
本稿では,プロンプトを最適化する代わりに,ターゲット応答を直接抽出することに焦点を当てた,ターゲット駆動型攻撃パラダイムを提案する。
論文 参考訳(メタデータ) (2024-08-27T08:12:08Z) - Characterizing and Evaluating the Reliability of LLMs against Jailbreak Attacks [23.782566331783134]
我々は3つのカテゴリ、61の特定の有害なカテゴリからの1525の質問、13の人気のあるLCMの10の最先端のジェイルブレイク戦略に焦点を当てた。
攻撃成功率(ASR)、毒性スコア(Toxicity Score)、Fluency(Fluency)、Token Length(Token Length)、文法エラー(Grammatical Errors)などの多次元指標を用いて、ジェイルブレイク下でのLLMのアウトプットを徹底的に評価する。
モデル,攻撃戦略,有害コンテンツの種類,および評価指標間の相関関係について検討し,多面的評価フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-18T01:58:03Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by Exploring Refusal Loss Landscapes [61.916827858666906]
大規模言語モデル(LLM)は、ユーザがクエリを入力し、LLMが回答を生成する、顕著な生成AIツールになりつつある。
害と誤用を減らすため、人間のフィードバックからの強化学習のような高度な訓練技術を用いて、これらのLLMを人間の価値に合わせる努力がなされている。
近年の研究では、組込み安全ガードレールを転覆させようとする敵のジェイルブレイクの試みに対するLLMの脆弱性を強調している。
本稿では,脱獄を検知するGradient Cuffという手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T03:29:54Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
本稿では, 連続的な逆接接尾辞埋め込みを一貫性のある, 理解可能なテキストに変換するために, ASETF (Adversarial Suffix Embedding Translation Framework) を提案する。
本手法は,逆接接尾辞の計算時間を著しく短縮し,既存の手法よりもはるかに優れた攻撃成功率を実現する。
論文 参考訳(メタデータ) (2024-02-25T06:46:27Z) - Is LLM-as-a-Judge Robust? Investigating Universal Adversarial Attacks on Zero-shot LLM Assessment [8.948475969696075]
LLM(Large Language Models)は、筆記試験やベンチマークシステムなどの実世界の状況で使用される強力なゼロショットアセスメントである。
本研究では,LLMを判断し,膨らませたスコアを判断するために,短い普遍的対数句を欺くことができることを示す。
判定-LLMは,絶対スコアリングに使用する場合,これらの攻撃に対して有意に感受性が高いことが判明した。
論文 参考訳(メタデータ) (2024-02-21T18:55:20Z) - Benchmarking and Defending Against Indirect Prompt Injection Attacks on
Large Language Models [82.98081731588717]
大規模な言語モデルと外部コンテンツの統合は、間接的にインジェクション攻撃を行うアプリケーションを公開する。
本稿では,BIPIAと呼ばれる間接的インジェクション攻撃のリスクを評価するための最初のベンチマークについて紹介する。
我々は,素早い学習に基づく2つのブラックボックス法と,逆行訓練による微調整に基づくホワイトボックス防御法を開発した。
論文 参考訳(メタデータ) (2023-12-21T01:08:39Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。