論文の概要: Fuzzy Inference System for Test Case Prioritization in Software Testing
- arxiv url: http://arxiv.org/abs/2404.16395v1
- Date: Thu, 25 Apr 2024 08:08:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 14:28:55.249674
- Title: Fuzzy Inference System for Test Case Prioritization in Software Testing
- Title(参考訳): ソフトウェアテストにおけるテストケース優先順位付けのためのファジィ推論システム
- Authors: Aron Karatayev, Anna Ogorodova, Pakizar Shamoi,
- Abstract要約: テストケース優先順位付け(TCP)は、テスト効率を高めるための重要な戦略である。
本稿では,新しいファジィ論理に基づくTCP自動化手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the realm of software development, testing is crucial for ensuring software quality and adherence to requirements. However, it can be time-consuming and resource-intensive, especially when dealing with large and complex software systems. Test case prioritization (TCP) is a vital strategy to enhance testing efficiency by identifying the most critical test cases for early execution. This paper introduces a novel fuzzy logic-based approach to automate TCP, using fuzzy linguistic variables and expert-derived fuzzy rules to establish a link between test case characteristics and their prioritization. Our methodology utilizes two fuzzy variables - failure rate and execution time - alongside two crisp parameters: Prerequisite Test Case and Recently Updated Flag. Our findings demonstrate the proposed system capacity to rank test cases effectively through experimental validation on a real-world software system. The results affirm the practical applicability of our approach in optimizing the TCP and reducing the resource intensity of software testing.
- Abstract(参考訳): ソフトウェア開発の世界では、テストはソフトウェアの品質と要件の遵守を保証するために不可欠です。
しかし、特に大規模で複雑なソフトウェアシステムを扱う場合、時間とリソースを消費する可能性がある。
テストケース優先順位付け(TCP)は、早期実行において最も重要なテストケースを特定することによって、テスト効率を高めるための重要な戦略である。
本稿では、ファジィ言語変数とエキスパート由来のファジィルールを用いて、テストケース特性と優先順位付けのリンクを確立することによって、TCPを自動化するファジィ論理に基づく新しいアプローチを提案する。
提案手法では,2つのファジィ変数 – 障害発生率と実行時間 – と,前提条件であるテストケースと最近更新されたフラグ – を併用する。
本研究は,実世界のソフトウェアシステムに対する実験的な検証を通じて,テストケースを効果的にランク付けするシステム能力を示すものである。
その結果、TCPの最適化とソフトウェアテストのリソース強度の低減に、我々のアプローチの実践的適用性を確認した。
関連論文リスト
- CodeDPO: Aligning Code Models with Self Generated and Verified Source Code [52.70310361822519]
我々は、コード生成に好み学習を統合するフレームワークであるCodeDPOを提案し、コードの正確性と効率性という2つの重要なコード優先要因を改善した。
CodeDPOは、コードとテストケースを同時に生成、評価するセルフジェネレーション・アンド・バリデーションメカニズムを利用して、新しいデータセット構築方法を採用している。
論文 参考訳(メタデータ) (2024-10-08T01:36:15Z) - The Future of Software Testing: AI-Powered Test Case Generation and Validation [0.0]
本稿では、テストケースの生成と検証を改善する上で、AIが持つ変革の可能性について考察する。
テストプロセスの効率性、正確性、スケーラビリティを高める能力に重点を置いている。
また、高品質なトレーニングデータの必要性など、テストにAIを適用する際の重要な課題にも対処している。
論文 参考訳(メタデータ) (2024-09-09T17:12:40Z) - Segment-Based Test Case Prioritization: A Multi-objective Approach [8.972346309150199]
TCP(Test Case Prioritization)は、目的関数を最大化する実行順序でテストケースをスケジュールするコスト効率の高いソリューションである。
進化的検索アルゴリズムと4つのカバレッジ基準を用いてUIテストケースを優先する多目的最適化手法を提案する。
提案手法は,APFD(Average Percentage of Faults Detected)とAPFD(APFD with Cost)において,他の手法よりも優れている。
論文 参考訳(メタデータ) (2024-08-01T16:51:01Z) - On Test Sequence Generation using Multi-Objective Particle Swarm Optimization [0.2999888908665658]
ソフトウェア開発ライフサイクルにおいて、ソフトウェアテストは重要かつ不可欠な部分です。
ソフトウェア業界では、テストコストはソフトウェアプロジェクトの総コストの約35%から40%を占めることができます。
論文 参考訳(メタデータ) (2024-04-09T18:35:21Z) - Active Test-Time Adaptation: Theoretical Analyses and An Algorithm [51.84691955495693]
テスト時間適応(TTA)は、教師なし設定でストリーミングテストデータの分散シフトに対処する。
完全TTA設定内に能動学習を統合する能動テスト時間適応(ATTA)の新たな問題設定を提案する。
論文 参考訳(メタデータ) (2024-04-07T22:31:34Z) - Measuring Software Testability via Automatically Generated Test Cases [8.17364116624769]
ソフトウェアメトリクスに基づいたテスト容易性測定のための新しい手法を提案する。
提案手法は, 自動検査生成と突然変異解析を利用して, 有効な検査症例の相対的硬度に関する証拠を定量化する。
論文 参考訳(メタデータ) (2023-07-30T09:48:51Z) - FuzzyFlow: Leveraging Dataflow To Find and Squash Program Optimization
Bugs [92.47146416628965]
FuzzyFlowはプログラム最適化をテストするために設計されたフォールトローカライゼーションとテストケース抽出フレームワークである。
我々は、データフロープログラム表現を活用して、完全に再現可能なシステム状態と最適化のエリア・オブ・エフェクトをキャプチャする。
テスト時間を削減するため,テスト入力を最小限に抑えるアルゴリズムを設計し,再計算のためのメモリ交換を行う。
論文 参考訳(メタデータ) (2023-06-28T13:00:17Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - On Pitfalls of Test-Time Adaptation [82.8392232222119]
TTA(Test-Time Adaptation)は、分散シフトの下で堅牢性に取り組むための有望なアプローチとして登場した。
TTABは,10の最先端アルゴリズム,多種多様な分散シフト,および2つの評価プロトコルを含むテスト時間適応ベンチマークである。
論文 参考訳(メタデータ) (2023-06-06T09:35:29Z) - Machine Learning Techniques for Software Quality Assurance: A Survey [5.33024001730262]
我々は,障害予測とテストケース優先順位付けの両方における様々なアプローチについて考察する。
近年,障害予測のためのディープラーニングアルゴリズムは,プログラムのセマンティクスと障害予測機能とのギャップを埋めるのに役立つ。
論文 参考訳(メタデータ) (2021-04-29T00:37:27Z) - Online Learning Probabilistic Event Calculus Theories in Answer Set
Programming [70.06301658267125]
イベント認識(CER)システムは、事前に定義されたイベントパターンを使用して、ストリーミングタイムスタンプデータセットで発生を検出する。
本稿では,複雑なイベントパターンによる確率論的推論を,イベント計算で重み付けされたルールの形で行うことができるAnswer Set Programming(ASP)に基づくシステムを提案する。
その結果, 効率と予測の両面で, 新たなアプローチの優位性が示された。
論文 参考訳(メタデータ) (2021-03-31T23:16:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。