Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms
- URL: http://arxiv.org/abs/2404.16450v1
- Date: Thu, 25 Apr 2024 09:30:19 GMT
- Title: Unconditional correctness of recent quantum algorithms for factoring and computing discrete logarithms
- Authors: Cédric Pilatte,
- Abstract summary: In 2023, Regev proposed a multi-dimensional version of Shor's algorithm that requires far fewer quantum gates.
We prove a version of this conjecture using tools from analytic number theory.
As a result, we obtain an unconditional proof of correctness of this improved quantum algorithm.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In 1994, Shor introduced his famous quantum algorithm to factor integers and compute discrete logarithms in polynomial time. In 2023, Regev proposed a multi-dimensional version of Shor's algorithm that requires far fewer quantum gates. His algorithm relies on a number-theoretic conjecture on the elements in $(\mathbb{Z}/N\mathbb{Z})^{\times}$ that can be written as short products of very small prime numbers. We prove a version of this conjecture using tools from analytic number theory such as zero-density estimates. As a result, we obtain an unconditional proof of correctness of this improved quantum algorithm and of subsequent variants.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Integer Factorization by Quantum Measurements [0.0]
Quantum algorithms are at the heart of the ongoing efforts to use quantum mechanics to solve computational problems unsolvable on classical computers.
Among the known quantum algorithms, a special role is played by the Shor algorithm, i.e. a quantum-time algorithm for integer factorization.
Here we present a different algorithm for integer factorization based on another genuine quantum property: quantum measurement.
arXiv Detail & Related papers (2023-09-19T17:00:01Z) - Quantum Multiplication Algorithm Based on the Convolution Theorem [0.0]
We propose a quantum algorithm for integer multiplication with time complexity $O(sqrtnlog2 n)$.
Unlike the Harvey algorithm, our algorithm does not have the restriction of being applicable solely to extremely large numbers.
The paper also reviews the history and development of classical multiplication algorithms and motivates us to explore how quantum resources can provide new perspectives and possibilities for this fundamental problem.
arXiv Detail & Related papers (2023-06-14T12:40:54Z) - Quantum Computing Provides Exponential Regret Improvement in Episodic
Reinforcement Learning [35.11103784048256]
We propose an textitUpper Confidence Bound (UCB) based quantum algorithmic framework to facilitate learning of a finite-horizon MDP.
Our quantum algorithm achieves an exponential improvement in regret as compared to the classical counterparts.
arXiv Detail & Related papers (2023-02-16T23:01:27Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Complexity-Theoretic Limitations on Quantum Algorithms for Topological
Data Analysis [59.545114016224254]
Quantum algorithms for topological data analysis seem to provide an exponential advantage over the best classical approach.
We show that the central task of TDA -- estimating Betti numbers -- is intractable even for quantum computers.
We argue that an exponential quantum advantage can be recovered if the input data is given as a specification of simplices.
arXiv Detail & Related papers (2022-09-28T17:53:25Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - An efficient quantum algorithm for lattice problems achieving
subexponential approximation factor [2.3351527694849574]
We give a quantum algorithm for solving the Bounded Distance Decoding (BDD) problem with a subexponential approximation factor on a class of integer lattices.
The running time of the quantum algorithm is for one range of approximation factors and subexponential time for a second range of approximation factors.
This view makes for a clean quantum algorithm in terms of finite abelian groups, uses relatively little from lattice theory, and suggests exploring approximation algorithms for lattice problems in parameters other than dimension alone.
arXiv Detail & Related papers (2022-01-31T18:58:33Z) - Basic Quantum Algorithms [0.0]
Quantum computing is evolving so rapidly that it forces us to revisit, rewrite, and update the foundations of the theory.
Basic Quantum Algorithms revisits the earliest quantum algorithms.
arXiv Detail & Related papers (2022-01-25T19:00:10Z) - Using Shor's algorithm on near term Quantum computers: a reduced version [0.0]
We introduce a reduced version of Shor's algorithm that proposes a step forward in increasing the range of numbers that can be factorized on noisy Quantum devices.
In particular, we have found noteworthy results in most cases, often being able to factor the given number with only one of the proposed algorithm.
arXiv Detail & Related papers (2021-12-23T15:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.