Efficient algorithms for regularized Poisson Non-negative Matrix Factorization
- URL: http://arxiv.org/abs/2404.16505v1
- Date: Thu, 25 Apr 2024 10:57:50 GMT
- Title: Efficient algorithms for regularized Poisson Non-negative Matrix Factorization
- Authors: Nathanaël Perraudin, Adrien Teutrie, Cécile Hébert, Guillaume Obozinski,
- Abstract summary: We consider the problem of regularized Poisson Non-negative Matrix Factorization (NMF) problem.
This problem holds significant relevance in numerous Machine Learning applications.
We build approriate majorizing function for Lipschitz and relatively smooth functions, and show how to introduce linear constraints into the problem.
- Score: 5.947994020693636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of regularized Poisson Non-negative Matrix Factorization (NMF) problem, encompassing various regularization terms such as Lipschitz and relatively smooth functions, alongside linear constraints. This problem holds significant relevance in numerous Machine Learning applications, particularly within the domain of physical linear unmixing problems. A notable challenge arises from the main loss term in the Poisson NMF problem being a KL divergence, which is non-Lipschitz, rendering traditional gradient descent-based approaches inefficient. In this contribution, we explore the utilization of Block Successive Upper Minimization (BSUM) to overcome this challenge. We build approriate majorizing function for Lipschitz and relatively smooth functions, and show how to introduce linear constraints into the problem. This results in the development of two novel algorithms for regularized Poisson NMF. We conduct numerical simulations to showcase the effectiveness of our approach.
Related papers
- Single-loop Algorithms for Stochastic Non-convex Optimization with Weakly-Convex Constraints [49.76332265680669]
This paper examines a crucial subset of problems where both the objective and constraint functions are weakly convex.
Existing methods often face limitations, including slow convergence rates or reliance on double-loop designs.
We introduce a novel single-loop penalty-based algorithm to overcome these challenges.
arXiv Detail & Related papers (2025-04-21T17:15:48Z) - An Accelerated Alternating Partial Bregman Algorithm for ReLU-based Matrix Decomposition [0.0]
In this paper, we aim to investigate the sparse low-rank characteristics rectified on non-negative matrices.
We propose a novel regularization term incorporating useful structures in clustering and compression tasks.
We derive corresponding closed-form solutions while maintaining the $L$-smooth property always holds for any $Lge 1$.
arXiv Detail & Related papers (2025-03-04T08:20:34Z) - FEM-based Neural Networks for Solving Incompressible Fluid Flows and Related Inverse Problems [41.94295877935867]
numerical simulation and optimization of technical systems described by partial differential equations is expensive.
A comparatively new approach in this context is to combine the good approximation properties of neural networks with the classical finite element method.
In this paper, we extend this approach to saddle-point and non-linear fluid dynamics problems, respectively.
arXiv Detail & Related papers (2024-09-06T07:17:01Z) - Feature selection in linear SVMs via a hard cardinality constraint: a scalable SDP decomposition approach [3.7876216422538485]
We study the embedded feature selection problem in linear Support Vector Machines (SVMs) in which a cardinality constraint is employed.
The problem is NP-hard due to the presence of the cardinality constraint, even though the original linear SVM amounts to a solvable problem in time.
To handle the hard problem, we first introduce two mixed-integer formulations for which novel semidefinite relaxations are proposed.
arXiv Detail & Related papers (2024-04-15T19:15:32Z) - Constrained Bi-Level Optimization: Proximal Lagrangian Value function
Approach and Hessian-free Algorithm [8.479947546216131]
We develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)
LV-HBA is especially well-suited for machine learning applications.
arXiv Detail & Related papers (2024-01-29T13:50:56Z) - Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation
Constrained Optimization [88.0031283949404]
Many real-world problems have complicated non functional constraints and use a large number of data points.
Our proposed method outperforms an existing method with the previously best-known result.
arXiv Detail & Related papers (2022-12-19T14:48:54Z) - Learning to Optimize with Stochastic Dominance Constraints [103.26714928625582]
In this paper, we develop a simple yet efficient approach for the problem of comparing uncertain quantities.
We recast inner optimization in the Lagrangian as a learning problem for surrogate approximation, which bypasses apparent intractability.
The proposed light-SD demonstrates superior performance on several representative problems ranging from finance to supply chain management.
arXiv Detail & Related papers (2022-11-14T21:54:31Z) - Orthogonal Nonnegative Matrix Factorization with Sparsity Constraints [0.0]
This article presents a novel approach to solving the sparsity-constrained Orthogonal Nonnegative Matrix Factorization (SCONMF) problem.
By reformulating SCONMF as a capacity-constrained facility-location problem, the proposed method naturally integrates non-negativity, orthogonality, and sparsity constraints.
Specifically, our approach integrates control-barrier function (CBF) based framework used for dynamic optimal control design problems with maximum-entropy-principle-based framework used for facility location problems to enforce these constraints while ensuring robust factorization.
arXiv Detail & Related papers (2022-10-06T04:30:59Z) - Tightening Discretization-based MILP Models for the Pooling Problem
using Upper Bounds on Bilinear Terms [2.6253445491808307]
Discretization-based methods have been proposed for solving non optimization problems with bi-linear terms.
This paper shows that discretization-based MILP models can be used to solve the pooling problem.
arXiv Detail & Related papers (2022-07-08T05:28:59Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Physics-informed neural network simulation of multiphase poroelasticity
using stress-split sequential training [0.0]
We present a framework for solving problems governed by partial differential equations (PDEs) based on elastic networks.
We find that the approach converges to solve problems of porosci, Barry-Scier's injection-production problem, and a two-phase drainage problem.
arXiv Detail & Related papers (2021-10-06T20:09:09Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - On the Treatment of Optimization Problems with L1 Penalty Terms via
Multiobjective Continuation [0.0]
We present a novel algorithm that allows us to gain detailed insight into the effects of sparsity in linear and nonlinear optimization.
Our method can be seen as a generalization of well-known homotopy methods for linear regression problems to the nonlinear case.
arXiv Detail & Related papers (2020-12-14T13:00:50Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.