論文の概要: Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Forecast
- arxiv url: http://arxiv.org/abs/2404.16549v1
- Date: Thu, 25 Apr 2024 12:04:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:49:56.904919
- Title: Application of Long-Short Term Memory and Convolutional Neural Networks for Real-Time Bridge Scour Forecast
- Title(参考訳): 長期記憶と畳み込みニューラルネットワークのリアルタイム橋梁せん断予測への適用
- Authors: Tahrima Hashem, Negin Yousefpour,
- Abstract要約: 我々は,過去のセンサモニタリングデータに基づいて,橋脚周辺の深度変化を予測するために,ディープラーニングアルゴリズムの力を利用する。
本研究では,Long Short-Term Memory (LSTM) モデルとConvolutional Neural Network (CNN) モデルの性能について検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Scour around bridge piers is a critical challenge for infrastructures around the world. In the absence of analytical models and due to the complexity of the scour process, it is difficult for current empirical methods to achieve accurate predictions. In this paper, we exploit the power of deep learning algorithms to forecast the scour depth variations around bridge piers based on historical sensor monitoring data, including riverbed elevation, flow elevation, and flow velocity. We investigated the performance of Long Short-Term Memory (LSTM) and Convolutional Neural Network (CNN) models for real-time scour forecasting using data collected from bridges in Alaska and Oregon from 2006 to 2021. The LSTM models achieved mean absolute error (MAE) ranging from 0.1m to 0.5m for predicting bed level variations a week in advance, showing a reasonable performance. The Fully Convolutional Network (FCN) variant of CNN outperformed other CNN configurations, showing a comparable performance to LSTMs with significantly lower computational costs. We explored various innovative random-search heuristics for hyperparameter tuning and model optimisation which resulted in reduced computational cost compared to grid-search method. The impact of different combinations of sensor features on scour prediction showed the significance of the historical time series of scour for predicting upcoming events. Overall, this study provides a greater understanding of the potential of Deep Learning (DL) for real-time scour forecasting and early warning in bridges with diverse scour and flow characteristics including riverine and tidal/coastal bridges.
- Abstract(参考訳): 橋の桟橋周辺は、世界中のインフラにとって重要な課題だ。
解析モデルが欠如し、歪過程の複雑さのため、現在の経験的手法では正確な予測が困難である。
本稿では,河床標高,流高,流速などの履歴センサ観測データに基づいて,橋脚周囲のせん断深度変動を予測するために,深層学習アルゴリズムの力を利用する。
2006年から2021年までのアラスカ州とオレゴン州の橋梁から収集したデータを用いて, 長期記憶(LSTM)モデルと畳み込みニューラルネットワーク(CNN)モデルを用いて, リアルタイムなせん断予測を行った。
LSTMモデルでは, 平均絶対誤差 (MAE) は週毎のベッドレベルの変動を予測するために0.1mから0.5mの範囲で達成され, 妥当な性能を示した。
CNNのFCN(Fully Convolutional Network)は、他のCNN構成よりも優れており、計算コストを大幅に削減したLSTMに匹敵する性能を示した。
我々は,超パラメータチューニングとモデル最適化のための様々な革新的なランダム探索ヒューリスティックを探索し,グリッド探索法と比較して計算コストを削減した。
センサの異なる組み合わせが、来るべき事象を予測するために、歴史的時系列のせん断の重要さを示した。
本研究は, 河川, 干潟, 海岸橋など, 各種の潮流を有する橋において, リアルタイムの潮流予測と早期警戒のための深層学習(DL)の可能性について, より深く理解するものである。
関連論文リスト
- Neural Networks with LSTM and GRU in Modeling Active Fires in the Amazon [0.0]
本研究は,ブラジルのアマゾンにあるAQUA_M-T衛星によって検出された活動点の歴史的時系列をモデル化し,予測するための包括的方法論を提案する。
このアプローチでは、Long Short-Term Memory(LSTM)とGated Recurrent Unit(GRU)アーキテクチャを組み合わせた混合リカレントニューラルネットワーク(RNN)モデルを採用して、毎日検出されたアクティブファイアスポットの月次蓄積を予測する。
論文 参考訳(メタデータ) (2024-09-04T13:11:59Z) - Hybridization of Persistent Homology with Neural Networks for Time-Series Prediction: A Case Study in Wave Height [0.0]
本稿では,ニューラルネットワークモデルの予測性能を向上させる機能工学手法を提案する。
具体的には、計算トポロジ手法を利用して、入力データから貴重なトポロジ的特徴を導出する。
タイムアヘッド予測では、FNN、RNN、LSTM、GRUモデルにおいて、R2$スコアの強化が重要だった。
論文 参考訳(メタデータ) (2024-09-03T01:26:21Z) - Physics-Inspired Deep Learning and Transferable Models for Bridge Scour Prediction [2.451326684641447]
深層学習を用いたせん断予測を橋渡しするために,せん断物理に触発されたニューラルネットワーク(SPINN)を導入する。
SPINNは物理に基づく経験的方程式をディープニューラルネットワークに統合し、サイト固有の履歴監視データを使用してトレーニングする。
性能の変動にもかかわらず、SPINNは、ほとんどのケースで純粋なデータ駆動モデルよりも優れていた。
論文 参考訳(メタデータ) (2024-07-01T13:08:09Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - A predictive physics-aware hybrid reduced order model for reacting flows [65.73506571113623]
反応流問題の解法として,新しいハイブリッド型予測次数モデル (ROM) を提案する。
自由度は、数千の時間的点から、対応する時間的係数を持ついくつかのPODモードへと減少する。
時間係数を予測するために、2つの異なるディープラーニングアーキテクチャがテストされている。
論文 参考訳(メタデータ) (2023-01-24T08:39:20Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Probabilistic AutoRegressive Neural Networks for Accurate Long-range
Forecasting [6.295157260756792]
確率的自己回帰ニューラルネットワーク(PARNN)について紹介する。
PARNNは、非定常性、非線形性、非調和性、長距離依存、カオスパターンを示す複雑な時系列データを扱うことができる。
本研究では,Transformers,NBeats,DeepARなどの標準統計モデル,機械学習モデル,ディープラーニングモデルに対して,PARNNの性能を評価する。
論文 参考訳(メタデータ) (2022-04-01T17:57:36Z) - Emulating Spatio-Temporal Realizations of Three-Dimensional Isotropic
Turbulence via Deep Sequence Learning Models [24.025975236316842]
最先端のディープラーニング技術を用いて3次元乱流をモデル化するために,データ駆動方式を用いる。
モデルの精度は、統計および物理に基づくメトリクスを用いて評価される。
論文 参考訳(メタデータ) (2021-12-07T03:33:39Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。