論文の概要: Conditional Distribution Modelling for Few-Shot Image Synthesis with Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.16556v2
- Date: Mon, 29 Apr 2024 03:09:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:19:52.570966
- Title: Conditional Distribution Modelling for Few-Shot Image Synthesis with Diffusion Models
- Title(参考訳): 拡散モデルを用いたFew-Shot画像合成のための条件分布モデル
- Authors: Parul Gupta, Munawar Hayat, Abhinav Dhall, Thanh-Toan Do,
- Abstract要約: 少ないショット画像合成は、いくつかの例画像のみを使用して、斬新なカテゴリの多彩で現実的な画像を生成する。
本研究では,ディフュージョンモデルを利用した条件分布モデル (CDM) を提案する。
- 参考スコア(独自算出の注目度): 29.821909424996015
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot image synthesis entails generating diverse and realistic images of novel categories using only a few example images. While multiple recent efforts in this direction have achieved impressive results, the existing approaches are dependent only upon the few novel samples available at test time in order to generate new images, which restricts the diversity of the generated images. To overcome this limitation, we propose Conditional Distribution Modelling (CDM) -- a framework which effectively utilizes Diffusion models for few-shot image generation. By modelling the distribution of the latent space used to condition a Diffusion process, CDM leverages the learnt statistics of the training data to get a better approximation of the unseen class distribution, thereby removing the bias arising due to limited number of few shot samples. Simultaneously, we devise a novel inversion based optimization strategy that further improves the approximated unseen class distribution, and ensures the fidelity of the generated samples to the unseen class. The experimental results on four benchmark datasets demonstrate the effectiveness of our proposed CDM for few-shot generation.
- Abstract(参考訳): 少ないショット画像合成は、いくつかの例画像のみを使用して、斬新なカテゴリの多彩で現実的な画像を生成する。
この方向の最近の試みは印象的な成果を上げているが、既存のアプローチは、生成した画像の多様性を制限する新しい画像を生成するために、テスト時に利用可能ないくつかの新しいサンプルにのみ依存している。
この制限を克服するために,ディフュージョンモデルを利用した数ショット画像生成のための条件分散モデリング(CDM)を提案する。
拡散過程の条件付けに使用される潜伏空間の分布をモデル化することにより、CDMはトレーニングデータの学習統計を利用して、目に見えないクラス分布をよりよく近似し、少数のショットサンプルによって生じるバイアスを除去する。
同時に、近似された未知のクラス分布をさらに改善し、生成したサンプルが未知のクラスに忠実であることを保証する、新しい反転に基づく最適化戦略を考案する。
4つのベンチマークデータセットによる実験結果から,提案したCDMの有効性が示された。
関連論文リスト
- Rejection Sampling IMLE: Designing Priors for Better Few-Shot Image
Synthesis [7.234618871984921]
新たな研究分野は、限られたトレーニングデータで深層生成モデルを学ぶことを目的としている。
トレーニングに使用する事前分布を変更する新しいアプローチであるRS-IMLEを提案する。
これにより、既存のGANやIMLEベースの手法に比べて画質が大幅に向上する。
論文 参考訳(メタデータ) (2024-09-26T00:19:42Z) - Few-Shot Image Generation by Conditional Relaxing Diffusion Inversion [37.18537753482751]
条件拡散緩和インバージョン(CRDI)は、合成画像生成における分布の多様性を高めるために設計されている。
CRDIはいくつかのサンプルに基づいた微調整を頼りにしていない。
ターゲットの画像インスタンスの再構築と、数ショットの学習による多様性の拡大に重点を置いている。
論文 参考訳(メタデータ) (2024-07-09T21:58:26Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
最小品質の損失を最小限に抑えた1ステップ生成モデルに拡散モデルを蒸留する最大可能性に基づく手法を提案する。
本研究では, 蒸留プロセスの安定化を図るため, 再パラメータ化サンプリング手法とノイズキャンセリング手法を開発した。
論文 参考訳(メタデータ) (2024-05-27T05:55:22Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
本稿では,T-DiffReconという名前の拡散モデルに基づくMRI再構成法を提案する。
また、モデルにより生成されたMRI画像の品質を高めるために、MF-UNetモジュールを組み込むことを提案する。
論文 参考訳(メタデータ) (2024-02-17T13:09:00Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Conditional Diffusion Models for Weakly Supervised Medical Image
Segmentation [18.956306942099097]
条件拡散モデル(CDM)は、特定の分布の対象となる画像を生成することができる。
我々は,対象対象物の予測マスクを取得するために,CDMに隠されたカテゴリ認識意味情報を利用する。
本手法は,2つの医用画像セグメンテーションデータセット上で,最先端のCAMおよび拡散モデル法より優れる。
論文 参考訳(メタデータ) (2023-06-06T17:29:26Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
拡散モデルの高速サンプリング法であるMDD-DDMを提案する。
我々のアプローチは、学習した分布を所定の予算のタイムステップで微調整するために、最大平均離散性(MMD)を使用するという考え方に基づいている。
提案手法は,広範に普及した拡散モデルで要求されるわずかな時間で高品質なサンプルを生成できることが示唆された。
論文 参考訳(メタデータ) (2023-01-19T09:48:07Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。