Deep learning-based blind image super-resolution with iterative kernel reconstruction and noise estimation
- URL: http://arxiv.org/abs/2404.16564v1
- Date: Thu, 25 Apr 2024 12:27:22 GMT
- Title: Deep learning-based blind image super-resolution with iterative kernel reconstruction and noise estimation
- Authors: Hasan F. Ates, Suleyman Yildirim, Bahadir K. Gunturk,
- Abstract summary: We propose IKR-Net (Iterative Kernel Reconstruction Network) for blind SISR.
IKR-Net achieves state-of-the-art results in blind SISR, especially for noisy images with motion blur.
- Score: 3.2157163136267934
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Blind single image super-resolution (SISR) is a challenging task in image processing due to the ill-posed nature of the inverse problem. Complex degradations present in real life images make it difficult to solve this problem using na\"ive deep learning approaches, where models are often trained on synthetically generated image pairs. Most of the effort so far has been focused on solving the inverse problem under some constraints, such as for a limited space of blur kernels and/or assuming noise-free input images. Yet, there is a gap in the literature to provide a well-generalized deep learning-based solution that performs well on images with unknown and highly complex degradations. In this paper, we propose IKR-Net (Iterative Kernel Reconstruction Network) for blind SISR. In the proposed approach, kernel and noise estimation and high-resolution image reconstruction are carried out iteratively using dedicated deep models. The iterative refinement provides significant improvement in both the reconstructed image and the estimated blur kernel even for noisy inputs. IKR-Net provides a generalized solution that can handle any type of blur and level of noise in the input low-resolution image. IKR-Net achieves state-of-the-art results in blind SISR, especially for noisy images with motion blur.
Related papers
- Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Kernel-aware Raw Burst Blind Super-Resolution [0.0]
Burst super-resolution (SR) provides a possibility of restoring rich details from low-quality images.
Existing non-blind networks usually lead to a severe performance drop in recovering high-resolution (HR) images.
We introduce a kernel-aware deformable alignment module which can effectively align the raw images with consideration of the blurry priors.
arXiv Detail & Related papers (2021-12-14T11:49:13Z) - Unsupervised Single Image Super-resolution Under Complex Noise [60.566471567837574]
This paper proposes a model-based unsupervised SISR method to deal with the general SISR task with unknown degradations.
The proposed method can evidently surpass the current state of the art (SotA) method (about 1dB PSNR) not only with a slighter model (0.34M vs. 2.40M) but also faster speed.
arXiv Detail & Related papers (2021-07-02T11:55:40Z) - Kernel Adversarial Learning for Real-world Image Super-resolution [23.904933824966605]
We propose a more realistic process to synthesise low-resolution images for real-world image SR by introducing a new Kernel Adversarial Learning Super-resolution framework.
In the proposed framework, degradation kernels and noises are adaptively modelled rather than explicitly specified.
We also propose a high-frequency selective objective and an iterative supervision process to further boost the model SR reconstruction accuracy.
arXiv Detail & Related papers (2021-04-19T01:51:21Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
Single image super-resolution (SISR) methods would not perform well if the assumed degradation model deviates from those in real images.
This paper proposes to design a more complex but practical degradation model that consists of randomly shuffled blur, downsampling and noise degradations.
arXiv Detail & Related papers (2021-03-25T17:40:53Z) - Blind Image Super-Resolution with Spatial Context Hallucination [5.849485167287474]
We propose a novel Spatial Context Hallucination Network (SCHN) for blind super-resolution without knowing the degradation kernel.
We train our model on two high quality datasets, DIV2K and Flickr2K.
Our method performs better than state-of-the-art methods when input images are corrupted with random blur and noise.
arXiv Detail & Related papers (2020-09-25T22:36:07Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Deep Generative Adversarial Residual Convolutional Networks for
Real-World Super-Resolution [31.934084942626257]
We propose a deep Super-Resolution Residual Convolutional Generative Adversarial Network (SRResCGAN)
It follows the real-world degradation settings by adversarial training the model with pixel-wise supervision in the HR domain from its generated LR counterpart.
The proposed network exploits the residual learning by minimizing the energy-based objective function with powerful image regularization and convex optimization techniques.
arXiv Detail & Related papers (2020-05-03T00:12:38Z) - Deep Blind Video Super-resolution [85.79696784460887]
We propose a deep convolutional neural network (CNN) model to solve video SR by a blur kernel modeling approach.
The proposed CNN model consists of motion blur estimation, motion estimation, and latent image restoration modules.
We show that the proposed algorithm is able to generate clearer images with finer structural details.
arXiv Detail & Related papers (2020-03-10T13:43:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.