論文の概要: DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting
- arxiv url: http://arxiv.org/abs/2404.16622v1
- Date: Thu, 25 Apr 2024 14:07:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:30:22.150016
- Title: DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting
- Title(参考訳): DAVE - ローショットカウントのための検出検証パラダイム
- Authors: Jer Pelhan, Alan Lukežič, Vitjan Zavrtanik, Matej Kristan,
- Abstract要約: ローショットカウンタは、画像の例の少ないものまたは全くないものに基づいて、選択されたカテゴリに対応するオブジェクトの数を推定する。
現在の最先端技術では、対象位置密度マップの合計として総計を見積もっているが、個々の対象位置と大きさは提供していない。
本稿では,検出と検証のパラダイムに基づく低ショットカウンタであるDAVEを提案する。
- 参考スコア(独自算出の注目度): 10.461109095311546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-shot counters estimate the number of objects corresponding to a selected category, based on only few or no exemplars annotated in the image. The current state-of-the-art estimates the total counts as the sum over the object location density map, but does not provide individual object locations and sizes, which are crucial for many applications. This is addressed by detection-based counters, which, however fall behind in the total count accuracy. Furthermore, both approaches tend to overestimate the counts in the presence of other object classes due to many false positives. We propose DAVE, a low-shot counter based on a detect-and-verify paradigm, that avoids the aforementioned issues by first generating a high-recall detection set and then verifying the detections to identify and remove the outliers. This jointly increases the recall and precision, leading to accurate counts. DAVE outperforms the top density-based counters by ~20% in the total count MAE, it outperforms the most recent detection-based counter by ~20% in detection quality and sets a new state-of-the-art in zero-shot as well as text-prompt-based counting.
- Abstract(参考訳): ローショットカウンタは、画像にアノテートされた例はほとんどまたは全くないため、選択されたカテゴリに対応するオブジェクトの数を推定する。
現在の最先端技術では、対象位置密度マップ上の総和として推定されるが、個々の対象位置とサイズは提供されないため、多くのアプリケーションにとって不可欠である。
これは検出ベースのカウンタによって対処されるが、トータルカウント精度には劣る。
さらに、どちらのアプローチも、多くの偽陽性のため、他のオブジェクトクラスが存在する場合のカウントを過大評価する傾向がある。
本稿では,検出と検証のパラダイムに基づく低ショットカウンタであるDAVEを提案する。
これによりリコールと精度が向上し、正確なカウントが達成される。
DAVEは、最大密度ベースのカウンタを合計で約20%上回り、最新の検出ベースのカウンタを約20%上回り、ゼロショットでの最先端とテキストプロンプトベースのカウンタを新たに設定する。
関連論文リスト
- A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation [10.461109095311546]
ローショットオブジェクトカウンタは、注釈付き例題をほとんどあるいは全く使用せずに画像内のオブジェクト数を推定する。
既存のアプローチは、しばしば過一般化と偽陽性検出につながる。
本稿では,オブジェクト検出,セグメンテーション,カウント推定を行う新しいローショットカウンタであるGeCoを紹介する。
論文 参考訳(メタデータ) (2024-09-27T12:20:29Z) - Zero-Shot Object Counting with Language-Vision Models [50.1159882903028]
クラスに依存しないオブジェクトカウントは、テスト時に任意のクラスのオブジェクトインスタンスをカウントすることを目的としている。
現在の手法では、新しいカテゴリではしばしば利用できない入力として、人間に注釈をつけた模範を必要とする。
テスト期間中にクラス名のみを利用できる新しい設定であるゼロショットオブジェクトカウント(ZSC)を提案する。
論文 参考訳(メタデータ) (2023-09-22T14:48:42Z) - Joint Counting, Detection and Re-Identification for Multi-Object
Tracking [8.89262850257871]
混雑したシーンでは、共同検出と追跡は通常、ミスや誤検出のために正確なオブジェクト関連を見つけることができない。
混み合ったシーンに適したエンドツーエンドフレームワークであるCountingMOTで、カウント、検出、再識別を共同でモデル化する。
提案したMOTトラッカーは、オンラインとリアルタイムのトラッキングが可能で、公開ベンチマークMOT16(79.7のMOTA)、MOT17(81.3%のMOTA)、MOT20(78.9%のMOTA)の最先端結果が得られる。
論文 参考訳(メタデータ) (2022-12-12T12:53:58Z) - Few-shot Object Counting and Detection [25.61294147822642]
我々は、ターゲットオブジェクトクラスのいくつかの例のバウンディングボックスを考慮に入れ、ターゲットクラスのすべてのオブジェクトをカウントし、検出する新しいタスクに取り組む。
このタスクは、数ショットのオブジェクトカウントと同じ監督を共有しますが、オブジェクトのバウンディングボックスと総オブジェクトカウントを出力します。
本稿では,新しい2段階トレーニング戦略と,新しい不確実性に留意した小ショットオブジェクト検出器であるCounting-DETRを紹介する。
論文 参考訳(メタデータ) (2022-07-22T10:09:18Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
敵対的なサポートセットを強調するための検出戦略を提案する。
我々は,特徴保存型オートエンコーダフィルタリングと,この検出を行うサポートセットの自己相似性の概念を利用する。
提案手法は攻撃非依存であり, 最善の知識まで, 数発分類器の検出を探索する最初の方法である。
論文 参考訳(メタデータ) (2020-12-09T14:13:41Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
本稿では,ポイントレベルのアノテーションのみを用いて訓練された典型的なオブジェクト検出を可能にする,新たな自己学習手法を提案する。
トレーニング中、利用可能なポイントアノテーションを使用して、オブジェクトの中心点の推定を監督する。
実験の結果,本手法は検出タスクとカウントタスクの両方において,最先端のポイント管理手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2020-07-25T02:14:42Z) - Rethinking Object Detection in Retail Stores [55.359582952686175]
そこで我々はLocountと略される新しいタスク、同時にオブジェクトのローカライゼーションとカウントを提案する。
Locountは、関心のあるオブジェクトのグループをインスタンス数でローカライズするアルゴリズムを必要とする。
大規模オブジェクトのローカライズと数えるデータセットを小売店で収集する。
論文 参考訳(メタデータ) (2020-03-18T14:01:54Z) - Any-Shot Object Detection [81.88153407655334]
「アニーショット検出」とは、全く見えず、数発のカテゴリが推論中に同時に共起できる場所である。
我々は、ゼロショットと少数ショットの両方のオブジェクトクラスを同時に検出できる、統合された任意のショット検出モデルを提案する。
我々のフレームワークは、ゼロショット検出とFewショット検出タスクにのみ使用できる。
論文 参考訳(メタデータ) (2020-03-16T03:43:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。