DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting
- URL: http://arxiv.org/abs/2404.16622v1
- Date: Thu, 25 Apr 2024 14:07:52 GMT
- Title: DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting
- Authors: Jer Pelhan, Alan Lukežič, Vitjan Zavrtanik, Matej Kristan,
- Abstract summary: Low-shot counters estimate the number of objects corresponding to a selected category, based on only few or no exemplars in the image.
Current state-of-the-art estimates the total counts as the sum over the object location density map, but does not provide individual object locations and sizes.
We propose DAVE, a low-shot counter based on a detect-and-verify paradigm, that avoids the aforementioned issues by first generating a high-recall detection set and then verifying the detections to identify and remove the outliers.
- Score: 10.461109095311546
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-shot counters estimate the number of objects corresponding to a selected category, based on only few or no exemplars annotated in the image. The current state-of-the-art estimates the total counts as the sum over the object location density map, but does not provide individual object locations and sizes, which are crucial for many applications. This is addressed by detection-based counters, which, however fall behind in the total count accuracy. Furthermore, both approaches tend to overestimate the counts in the presence of other object classes due to many false positives. We propose DAVE, a low-shot counter based on a detect-and-verify paradigm, that avoids the aforementioned issues by first generating a high-recall detection set and then verifying the detections to identify and remove the outliers. This jointly increases the recall and precision, leading to accurate counts. DAVE outperforms the top density-based counters by ~20% in the total count MAE, it outperforms the most recent detection-based counter by ~20% in detection quality and sets a new state-of-the-art in zero-shot as well as text-prompt-based counting.
Related papers
- A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation [10.461109095311546]
Low-shot object counters estimate the number of objects in an image using few or no annotated exemplars.
The existing approaches often lead to overgeneralization and false positive detections.
We introduce GeCo, a novel low-shot counter that achieves accurate object detection, segmentation, and count estimation.
arXiv Detail & Related papers (2024-09-27T12:20:29Z) - Zero-Shot Object Counting with Language-Vision Models [50.1159882903028]
Class-agnostic object counting aims to count object instances of an arbitrary class at test time.
Current methods require human-annotated exemplars as inputs which are often unavailable for novel categories.
We propose zero-shot object counting (ZSC), a new setting where only the class name is available during test time.
arXiv Detail & Related papers (2023-09-22T14:48:42Z) - Joint Counting, Detection and Re-Identification for Multi-Object
Tracking [8.89262850257871]
In crowded scenes, joint detection and tracking usually fail to find accurate object associations due to missed or false detections.
We jointly model counting, detection and re-identification in an end-to-end framework, named CountingMOT, tailored for crowded scenes.
The proposed MOT tracker can perform online and real-time tracking, and achieves the state-of-the-art results on public benchmarks MOT16 (MOTA of 79.7), MOT17 (MOTA of 81.3%) and MOT20 (MOTA of 78.9%)
arXiv Detail & Related papers (2022-12-12T12:53:58Z) - Few-shot Object Counting and Detection [25.61294147822642]
We tackle a new task of few-shot object counting and detection. Given a few exemplar bounding boxes of a target object class, we seek to count and detect all objects of the target class.
This task shares the same supervision as the few-shot object counting but additionally outputs the object bounding boxes along with the total object count.
We introduce a novel two-stage training strategy and a novel uncertainty-aware few-shot object detector: Counting-DETR.
arXiv Detail & Related papers (2022-07-22T10:09:18Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Detection of Adversarial Supports in Few-shot Classifiers Using Feature
Preserving Autoencoders and Self-Similarity [89.26308254637702]
We propose a detection strategy to highlight adversarial support sets.
We make use of feature preserving autoencoder filtering and also the concept of self-similarity of a support set to perform this detection.
Our method is attack-agnostic and also the first to explore detection for few-shot classifiers to the best of our knowledge.
arXiv Detail & Related papers (2020-12-09T14:13:41Z) - A Self-Training Approach for Point-Supervised Object Detection and
Counting in Crowds [54.73161039445703]
We propose a novel self-training approach that enables a typical object detector trained only with point-level annotations.
During training, we utilize the available point annotations to supervise the estimation of the center points of objects.
Experimental results show that our approach significantly outperforms state-of-the-art point-supervised methods under both detection and counting tasks.
arXiv Detail & Related papers (2020-07-25T02:14:42Z) - Rethinking Object Detection in Retail Stores [55.359582952686175]
We propose a new task, simultaneously object localization and counting, abbreviated as Locount.
Locount requires algorithms to localize groups of objects of interest with the number of instances.
We collect a large-scale object localization and counting dataset with rich annotations in retail stores.
arXiv Detail & Related papers (2020-03-18T14:01:54Z) - Any-Shot Object Detection [81.88153407655334]
'Any-shot detection' is where totally unseen and few-shot categories can simultaneously co-occur during inference.
We propose a unified any-shot detection model, that can concurrently learn to detect both zero-shot and few-shot object classes.
Our framework can also be used solely for Zero-shot detection and Few-shot detection tasks.
arXiv Detail & Related papers (2020-03-16T03:43:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.