Multilayer Correlation Clustering
- URL: http://arxiv.org/abs/2404.16676v1
- Date: Thu, 25 Apr 2024 15:25:30 GMT
- Title: Multilayer Correlation Clustering
- Authors: Atsushi Miyauchi, Florian Adriaens, Francesco Bonchi, Nikolaj Tatti,
- Abstract summary: We establish Multilayer Correlation Clustering, a novel generalization of Correlation Clustering (Bansal et al., FOCS '02) to the multilayer setting.
In this paper, we are given a series of inputs of Correlation Clustering (called layers) over the common set $V$.
The goal is then to find a clustering of $V$ that minimizes the $ell_p$-norm ($pgeq 1$) of the disagreements vector.
- Score: 12.492037397168579
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we establish Multilayer Correlation Clustering, a novel generalization of Correlation Clustering (Bansal et al., FOCS '02) to the multilayer setting. In this model, we are given a series of inputs of Correlation Clustering (called layers) over the common set $V$. The goal is then to find a clustering of $V$ that minimizes the $\ell_p$-norm ($p\geq 1$) of the disagreements vector, which is defined as the vector (with dimension equal to the number of layers), each element of which represents the disagreements of the clustering on the corresponding layer. For this generalization, we first design an $O(L\log n)$-approximation algorithm, where $L$ is the number of layers, based on the well-known region growing technique. We then study an important special case of our problem, namely the problem with the probability constraint. For this case, we first give an $(\alpha+2)$-approximation algorithm, where $\alpha$ is any possible approximation ratio for the single-layer counterpart. For instance, we can take $\alpha=2.5$ in general (Ailon et al., JACM '08) and $\alpha=1.73+\epsilon$ for the unweighted case (Cohen-Addad et al., FOCS '23). Furthermore, we design a $4$-approximation algorithm, which improves the above approximation ratio of $\alpha+2=4.5$ for the general probability-constraint case. Computational experiments using real-world datasets demonstrate the effectiveness of our proposed algorithms.
Related papers
- Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - Replicable Clustering [57.19013971737493]
We propose algorithms for the statistical $k$-medians, statistical $k$-means, and statistical $k$-centers problems by utilizing approximation routines for their counterparts in a black-box manner.
We also provide experiments on synthetic distributions in 2D using the $k$-means++ implementation from sklearn as a black-box that validate our theoretical results.
arXiv Detail & Related papers (2023-02-20T23:29:43Z) - Improved Learning-augmented Algorithms for k-means and k-medians
Clustering [8.04779839951237]
We consider the problem of clustering in the learning-augmented setting, where we are given a data set in $d$-dimensional Euclidean space.
We propose a deterministic $k$-means algorithm that produces centers with improved bound on clustering cost.
Our algorithm works even when the predictions are not very accurate, i.e. our bound holds for $alpha$ up to $1/2$, an improvement over $alpha$ being at most $1/7$ in the previous work.
arXiv Detail & Related papers (2022-10-31T03:00:11Z) - New Coresets for Projective Clustering and Applications [34.82221047030618]
Given a set of points $P$ in $mathbbRd$, the goal is to find $k$ flats of dimension $j$, i.e., affine subspaces, that best fit $P$ under a given distance measure.
We show that our construction provides efficient coreset constructions for Cauchy, Welsch, Huber, Geman-McClure, Tukey, $L_infty$, and Fair regression.
arXiv Detail & Related papers (2022-03-08T19:50:27Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - Fuzzy Clustering with Similarity Queries [56.96625809888241]
The fuzzy or soft objective is a popular generalization of the well-known $k$-means problem.
We show that by making few queries, the problem becomes easier to solve.
arXiv Detail & Related papers (2021-06-04T02:32:26Z) - Small Covers for Near-Zero Sets of Polynomials and Learning Latent
Variable Models [56.98280399449707]
We show that there exists an $epsilon$-cover for $S$ of cardinality $M = (k/epsilon)O_d(k1/d)$.
Building on our structural result, we obtain significantly improved learning algorithms for several fundamental high-dimensional probabilistic models hidden variables.
arXiv Detail & Related papers (2020-12-14T18:14:08Z) - Deep Learning Meets Projective Clustering [66.726500395069]
A common approach for compressing NLP networks is to encode the embedding layer as a matrix $AinmathbbRntimes d$.
Inspired by emphprojective clustering from computational geometry, we suggest replacing this subspace by a set of $k$ subspaces.
arXiv Detail & Related papers (2020-10-08T22:47:48Z) - Query-Efficient Correlation Clustering [13.085439249887713]
Correlation clustering is arguably the most natural formulation of clustering.
A main drawback of correlation clustering is that it requires as input the $Theta(n2)$ pairwise similarities.
We devise a correlation clustering algorithm that attains a solution whose expected number of disagreements is at most $3cdot OPT + O(fracn3Q)$.
arXiv Detail & Related papers (2020-02-26T15:18:20Z) - Locally Private Hypothesis Selection [96.06118559817057]
We output a distribution from $mathcalQ$ whose total variation distance to $p$ is comparable to the best such distribution.
We show that the constraint of local differential privacy incurs an exponential increase in cost.
Our algorithms result in exponential improvements on the round complexity of previous methods.
arXiv Detail & Related papers (2020-02-21T18:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.