LEMDA: A Novel Feature Engineering Method for Intrusion Detection in IoT Systems
- URL: http://arxiv.org/abs/2404.16870v1
- Date: Sat, 20 Apr 2024 11:11:47 GMT
- Title: LEMDA: A Novel Feature Engineering Method for Intrusion Detection in IoT Systems
- Authors: Ali Ghubaish, Zebo Yang, Aiman Erbad, Raj Jain,
- Abstract summary: Intrusion detection systems (IDS) for the Internet of Things (IoT) systems can use AI-based models to ensure secure communications.
Complex models have notorious problems such as overfitting, low interpretability, and high computational complexity.
This paper proposes a new feature engineering method called LEMDA (Light feature Engineering based on the Mean Decrease in Accuracy)
- Score: 3.5323691899538137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrusion detection systems (IDS) for the Internet of Things (IoT) systems can use AI-based models to ensure secure communications. IoT systems tend to have many connected devices producing massive amounts of data with high dimensionality, which requires complex models. Complex models have notorious problems such as overfitting, low interpretability, and high computational complexity. Adding model complexity penalty (i.e., regularization) can ease overfitting, but it barely helps interpretability and computational efficiency. Feature engineering can solve these issues; hence, it has become critical for IDS in large-scale IoT systems to reduce the size and dimensionality of data, resulting in less complex models with excellent performance, smaller data storage, and fast detection. This paper proposes a new feature engineering method called LEMDA (Light feature Engineering based on the Mean Decrease in Accuracy). LEMDA applies exponential decay and an optional sensitivity factor to select and create the most informative features. The proposed method has been evaluated and compared to other feature engineering methods using three IoT datasets and four AI/ML models. The results show that LEMDA improves the F1 score performance of all the IDS models by an average of 34% and reduces the average training and detection times in most cases.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Lightweight CNN-BiLSTM based Intrusion Detection Systems for Resource-Constrained IoT Devices [38.16309790239142]
Intrusion Detection Systems (IDSs) have played a significant role in detecting and preventing cyber-attacks within traditional computing systems.
The limited computational resources available on Internet of Things (IoT) devices make it challenging to deploy conventional computing-based IDSs.
We propose a hybrid CNN architecture composed of a lightweight CNN and bidirectional LSTM (BiLSTM) to enhance the performance of IDS on the UNSW-NB15 dataset.
arXiv Detail & Related papers (2024-06-04T20:36:21Z) - Optimization of Lightweight Malware Detection Models For AIoT Devices [2.4947404267499587]
Malware intrusion is a problem for Internet of Things (IoT) and Artificial Intelligence of Things (AIoT) devices.
This research aims to optimize the proposed super learner meta-learning ensemble model to make it viable for low-end AIoT devices.
arXiv Detail & Related papers (2024-04-06T09:30:38Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - SECOE: Alleviating Sensors Failure in Machine Learning-Coupled IoT
Systems [0.0]
This paper proposes SECOE, a proactive approach for alleviating potentially simultaneous sensor failures.
SECOE includes a novel technique to minimize the number of models in the ensemble by harnessing the correlations among sensors.
Experiments reveal that SECOE effectively preserves prediction accuracy in the presence of sensor failures.
arXiv Detail & Related papers (2022-10-05T10:58:39Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
We propose an adaptive anomaly detection scheme with hierarchical edge computing (HEC)
We first construct multiple anomaly detection DNN models with increasing complexity, and associate each of them to a corresponding HEC layer.
Then, we design an adaptive model selection scheme that is formulated as a contextual-bandit problem and solved by using a reinforcement learning policy network.
arXiv Detail & Related papers (2021-08-09T08:45:47Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoT devices can hardly afford complex deep neural networks (DNN) models, and offloading anomaly detection tasks to the cloud incurs long delay.
We propose and build a demo for an adaptive anomaly detection approach for distributed hierarchical edge computing (HEC) systems.
We show that our proposed approach significantly reduces detection delay without sacrificing accuracy, as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-04-15T06:13:33Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.