AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs
- URL: http://arxiv.org/abs/2404.16873v1
- Date: Sun, 21 Apr 2024 22:18:13 GMT
- Title: AdvPrompter: Fast Adaptive Adversarial Prompting for LLMs
- Authors: Anselm Paulus, Arman Zharmagambetov, Chuan Guo, Brandon Amos, Yuandong Tian,
- Abstract summary: We present a novel method that uses another Large Language Models, called the AdvPrompter, to generate human-readable adversarial prompts in seconds.
We train the AdvPrompter using a novel algorithm that does not require access to the gradients of the TargetLLM.
The trained AdvPrompter generates suffixes that veil the input instruction without changing its meaning, such that the TargetLLM is lured to give a harmful response.
- Score: 51.217126257318924
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While recently Large Language Models (LLMs) have achieved remarkable successes, they are vulnerable to certain jailbreaking attacks that lead to generation of inappropriate or harmful content. Manual red-teaming requires finding adversarial prompts that cause such jailbreaking, e.g. by appending a suffix to a given instruction, which is inefficient and time-consuming. On the other hand, automatic adversarial prompt generation often leads to semantically meaningless attacks that can easily be detected by perplexity-based filters, may require gradient information from the TargetLLM, or do not scale well due to time-consuming discrete optimization processes over the token space. In this paper, we present a novel method that uses another LLM, called the AdvPrompter, to generate human-readable adversarial prompts in seconds, $\sim800\times$ faster than existing optimization-based approaches. We train the AdvPrompter using a novel algorithm that does not require access to the gradients of the TargetLLM. This process alternates between two steps: (1) generating high-quality target adversarial suffixes by optimizing the AdvPrompter predictions, and (2) low-rank fine-tuning of the AdvPrompter with the generated adversarial suffixes. The trained AdvPrompter generates suffixes that veil the input instruction without changing its meaning, such that the TargetLLM is lured to give a harmful response. Experimental results on popular open source TargetLLMs show state-of-the-art results on the AdvBench dataset, that also transfer to closed-source black-box LLM APIs. Further, we demonstrate that by fine-tuning on a synthetic dataset generated by AdvPrompter, LLMs can be made more robust against jailbreaking attacks while maintaining performance, i.e. high MMLU scores.
Related papers
- GASP: Efficient Black-Box Generation of Adversarial Suffixes for Jailbreaking LLMs [3.096869664709865]
We introduce Generative Adversarial Suffix Prompter (GASP) to improve adversarial suffix creation in a fully black-box setting.
Our experiments show that GASP can generate natural jailbreak prompts, significantly improving attack success rates, reducing training times, and accelerating inference speed.
arXiv Detail & Related papers (2024-11-21T14:00:01Z) - Aligning LLMs to Be Robust Against Prompt Injection [55.07562650579068]
We show that alignment can be a powerful tool to make LLMs more robust against prompt injection attacks.
Our method -- SecAlign -- first builds an alignment dataset by simulating prompt injection attacks.
Our experiments show that SecAlign robustifies the LLM substantially with a negligible hurt on model utility.
arXiv Detail & Related papers (2024-10-07T19:34:35Z) - Human-Interpretable Adversarial Prompt Attack on Large Language Models with Situational Context [49.13497493053742]
This research explores converting a nonsensical suffix attack into a sensible prompt via a situation-driven contextual re-writing.
We combine an independent, meaningful adversarial insertion and situations derived from movies to check if this can trick an LLM.
Our approach demonstrates that a successful situation-driven attack can be executed on both open-source and proprietary LLMs.
arXiv Detail & Related papers (2024-07-19T19:47:26Z) - Defending Against Indirect Prompt Injection Attacks With Spotlighting [11.127479817618692]
In common applications, multiple inputs can be processed by concatenating them together into a single stream of text.
Indirect prompt injection attacks take advantage of this vulnerability by embedding adversarial instructions into untrusted data being processed alongside user commands.
We introduce spotlighting, a family of prompt engineering techniques that can be used to improve LLMs' ability to distinguish among multiple sources of input.
arXiv Detail & Related papers (2024-03-20T15:26:23Z) - DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers [74.7446827091938]
We introduce an automatic prompt textbfDecomposition and textbfReconstruction framework for jailbreak textbfAttack (DrAttack)
DrAttack includes three key components: (a) Decomposition' of the original prompt into sub-prompts, (b) Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while
arXiv Detail & Related papers (2024-02-25T17:43:29Z) - ASETF: A Novel Method for Jailbreak Attack on LLMs through Translate Suffix Embeddings [58.82536530615557]
We propose an Adversarial Suffix Embedding Translation Framework (ASETF) to transform continuous adversarial suffix embeddings into coherent and understandable text.
Our method significantly reduces the computation time of adversarial suffixes and achieves a much better attack success rate to existing techniques.
arXiv Detail & Related papers (2024-02-25T06:46:27Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.