A Neural-Network-Based Approach for Loose-Fitting Clothing
- URL: http://arxiv.org/abs/2404.16896v1
- Date: Thu, 25 Apr 2024 05:52:20 GMT
- Title: A Neural-Network-Based Approach for Loose-Fitting Clothing
- Authors: Yongxu Jin, Dalton Omens, Zhenglin Geng, Joseph Teran, Abishek Kumar, Kenji Tashiro, Ronald Fedkiw,
- Abstract summary: We show how to approximate dynamic modes in loose-fitting clothing using a real-time numerical algorithm.
We also use skinning to reconstruct a rough approximation to a desirable mesh.
In contrast to recurrent neural networks that require a plethora of training data, QNNs perform well with significantly less training data.
- Score: 2.910739621411222
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since loose-fitting clothing contains dynamic modes that have proven to be difficult to predict via neural networks, we first illustrate how to coarsely approximate these modes with a real-time numerical algorithm specifically designed to mimic the most important ballistic features of a classical numerical simulation. Although there is some flexibility in the choice of the numerical algorithm used as a proxy for full simulation, it is essential that the stability and accuracy be independent from any time step restriction or similar requirements in order to facilitate real-time performance. In order to reduce the number of degrees of freedom that require approximations to their dynamics, we simulate rigid frames and use skinning to reconstruct a rough approximation to a desirable mesh; as one might expect, neural-network-based skinning seems to perform better than linear blend skinning in this scenario. Improved high frequency deformations are subsequently added to the skinned mesh via a quasistatic neural network (QNN). In contrast to recurrent neural networks that require a plethora of training data in order to adequately generalize to new examples, QNNs perform well with significantly less training data.
Related papers
- Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Analytically Integratable Zero-restlength Springs for Capturing Dynamic
Modes unrepresented by Quasistatic Neural Networks [6.601755525003559]
We present a novel paradigm for modeling certain types of dynamic simulation in real-time with the aid of neural networks.
We augment our quasistatic neural network (QNN) inference with a (real-time) dynamic simulation layer.
We demonstrate that the spring parameters can be robustly learned from a surprisingly small amount of dynamic simulation data.
arXiv Detail & Related papers (2022-01-25T06:44:15Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Oscillatory Fourier Neural Network: A Compact and Efficient Architecture
for Sequential Processing [16.69710555668727]
We propose a novel neuron model that has cosine activation with a time varying component for sequential processing.
The proposed neuron provides an efficient building block for projecting sequential inputs into spectral domain.
Applying the proposed model to sentiment analysis on IMDB dataset reaches 89.4% test accuracy within 5 epochs.
arXiv Detail & Related papers (2021-09-14T19:08:07Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
We propose a novel data-driven normalization method for deep neural networks that handle high-frequency financial time-series.
The proposed normalization scheme takes into account the bimodal characteristic of financial time-series.
Our experiments, conducted with state-of-the-arts neural networks and high-frequency data, show significant improvements over other normalization techniques.
arXiv Detail & Related papers (2021-09-01T07:52:03Z) - Stochastic Recurrent Neural Network for Multistep Time Series
Forecasting [0.0]
We leverage advances in deep generative models and the concept of state space models to propose an adaptation of the recurrent neural network for time series forecasting.
Our model preserves the architectural workings of a recurrent neural network for which all relevant information is encapsulated in its hidden states, and this flexibility allows our model to be easily integrated into any deep architecture for sequential modelling.
arXiv Detail & Related papers (2021-04-26T01:43:43Z) - Modeling the Nonsmoothness of Modern Neural Networks [35.93486244163653]
We quantify the nonsmoothness using a feature named the sum of the magnitude of peaks (SMP)
We envision that the nonsmoothness feature can potentially be used as a forensic tool for regression-based applications of neural networks.
arXiv Detail & Related papers (2021-03-26T20:55:19Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
We show that a measure of a model's training speed can be used to estimate its marginal likelihood.
We verify our results in model selection tasks for linear models and for the infinite-width limit of deep neural networks.
Our results suggest a promising new direction towards explaining why neural networks trained with gradient descent are biased towards functions that generalize well.
arXiv Detail & Related papers (2020-10-27T17:56:14Z) - Industrial Forecasting with Exponentially Smoothed Recurrent Neural
Networks [0.0]
We present a class of exponential smoothed recurrent neural networks (RNNs) which are well suited to modeling non-stationary dynamical systems arising in industrial applications.
Application of exponentially smoothed RNNs to forecasting electricity load, weather data, and stock prices highlight the efficacy of exponential smoothing of the hidden state for multi-step time series forecasting.
arXiv Detail & Related papers (2020-04-09T17:53:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.