mlr3summary: Concise and interpretable summaries for machine learning models
- URL: http://arxiv.org/abs/2404.16899v1
- Date: Thu, 25 Apr 2024 08:57:35 GMT
- Title: mlr3summary: Concise and interpretable summaries for machine learning models
- Authors: Susanne Dandl, Marc Becker, Bernd Bischl, Giuseppe Casalicchio, Ludwig Bothmann,
- Abstract summary: This work introduces a novel R package for concise, informative summaries of machine learning models.
We take inspiration from the summary function for (generalized) linear models in R, but extend it in several directions.
- Score: 9.191045750996524
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a novel R package for concise, informative summaries of machine learning models. We take inspiration from the summary function for (generalized) linear models in R, but extend it in several directions: First, our summary function is model-agnostic and provides a unified summary output also for non-parametric machine learning models; Second, the summary output is more extensive and customizable -- it comprises information on the dataset, model performance, model complexity, model's estimated feature importances, feature effects, and fairness metrics; Third, models are evaluated based on resampling strategies for unbiased estimates of model performances, feature importances, etc. Overall, the clear, structured output should help to enhance and expedite the model selection process, making it a helpful tool for practitioners and researchers alike.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
We present a novel framework to distill a powerful summarizer based on the information-theoretic objective for summarization.
We start off from Pythia-2.8B as the teacher model, which is not yet capable of summarization.
We arrive at a compact but powerful summarizer with only 568M parameters that performs competitively against ChatGPT.
arXiv Detail & Related papers (2024-03-20T17:42:08Z) - Self-Supervised Representation Learning with Meta Comprehensive
Regularization [11.387994024747842]
We introduce a module called CompMod with Meta Comprehensive Regularization (MCR), embedded into existing self-supervised frameworks.
We update our proposed model through a bi-level optimization mechanism, enabling it to capture comprehensive features.
We provide theoretical support for our proposed method from information theory and causal counterfactual perspective.
arXiv Detail & Related papers (2024-03-03T15:53:48Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Learn From Model Beyond Fine-Tuning: A Survey [78.80920533793595]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.
The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.
This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - Evaluating Representations with Readout Model Switching [18.475866691786695]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - FACT: Learning Governing Abstractions Behind Integer Sequences [7.895232155155041]
We introduce a novel view on the learning of concepts admitting complete finitary descriptions.
We lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models.
To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Toolkit.
arXiv Detail & Related papers (2022-09-20T08:20:03Z) - SummVis: Interactive Visual Analysis of Models, Data, and Evaluation for
Text Summarization [14.787106201073154]
SummVis is an open-source tool for visualizing abstractive summaries.
It enables fine-grained analysis of the models, data, and evaluation metrics associated with text summarization.
arXiv Detail & Related papers (2021-04-15T17:13:00Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
We propose an FMR model that finds sample clusters and jointly models multiple incomplete mixed-type targets simultaneously.
We provide non-asymptotic oracle performance bounds for our model under a high-dimensional learning framework.
The results show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-10-12T03:27:07Z) - Adversarial Infidelity Learning for Model Interpretation [43.37354056251584]
We propose a Model-agnostic Effective Efficient Direct (MEED) IFS framework for model interpretation.
Our framework mitigates concerns about sanity, shortcuts, model identifiability, and information transmission.
Our AIL mechanism can help learn the desired conditional distribution between selected features and targets.
arXiv Detail & Related papers (2020-06-09T16:27:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.