Efficient Variational Quantum Linear Solver for Structured Sparse Matrices
- URL: http://arxiv.org/abs/2404.16991v1
- Date: Thu, 25 Apr 2024 19:22:05 GMT
- Title: Efficient Variational Quantum Linear Solver for Structured Sparse Matrices
- Authors: Abeynaya Gnanasekaran, Amit Surana,
- Abstract summary: We show that by using an alternate basis one can better exploit the sparsity and underlying structure of matrix.
We employ the concept of unitary completion to design efficient quantum circuits for computing the global/local VQLS cost functions.
- Score: 0.6138671548064355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a novel approach for efficiently applying variational quantum linear solver (VQLS) in context of structured sparse matrices. Such matrices frequently arise during numerical solution of partial differential equations which are ubiquitous in science and engineering. Conventionally, Pauli basis is used for linear combination of unitary (LCU) decomposition of the underlying matrix to facilitate the evaluation the global/local VQLS cost functions. However, Pauli basis in worst case can result in number of LCU terms that scale quadratically with respect to the matrix size. We show that by using an alternate basis one can better exploit the sparsity and underlying structure of matrix leading to number of tensor product terms which scale only logarithmically with respect to the matrix size. Given this new basis is comprised of non-unitary operators, we employ the concept of unitary completion to design efficient quantum circuits for computing the global/local VQLS cost functions. We compare our approach with other related concepts in the literature including unitary dilation and measurement in Bell basis, and discuss its pros/cons while using VQLS applied to Heat equation as an example.
Related papers
- Double-Logarithmic Depth Block-Encodings of Simple Finite Difference Method's Matrices [0.0]
Solving differential equations is one of the most computationally expensive problems in classical computing.
Despite recent progress made in the field of quantum computing and quantum algorithms, its end-to-end application towards practical realization still remains unattainable.
arXiv Detail & Related papers (2024-10-07T17:44:30Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Quantum Iterative Methods for Solving Differential Equations with Application to Computational Fluid Dynamics [14.379311972506791]
We propose quantum methods for solving differential equations based on a gradual improvement of the solution via an iterative process.
We benchmark the approach on paradigmatic fluid dynamics problems.
arXiv Detail & Related papers (2024-04-12T17:08:27Z) - Quantum eigenvalue processing [0.0]
Problems in linear algebra can be solved on a quantum computer by processing eigenvalues of the non-normal input matrices.
We present a Quantum EigenValue Transformation (QEVT) framework for applying arbitrary transformations on eigenvalues of block-encoded non-normal operators.
We also present a Quantum EigenValue Estimation (QEVE) algorithm for operators with real spectra.
arXiv Detail & Related papers (2024-01-11T19:49:31Z) - Noisy Tensor Ring approximation for computing gradients of Variational
Quantum Eigensolver for Combinatorial Optimization [33.12181620473604]
Variational Quantum algorithms have established their potential to provide computational advantage in the realm of optimization.
These algorithms suffer from classically intractable gradients limiting the scalability.
This work proposes a classical gradient method which utilizes the parameter shift rule but computes the expected values from the circuits using a tensor ring approximation.
arXiv Detail & Related papers (2023-07-08T03:14:28Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - High-Dimensional Sparse Bayesian Learning without Covariance Matrices [66.60078365202867]
We introduce a new inference scheme that avoids explicit construction of the covariance matrix.
Our approach couples a little-known diagonal estimation result from numerical linear algebra with the conjugate gradient algorithm.
On several simulations, our method scales better than existing approaches in computation time and memory.
arXiv Detail & Related papers (2022-02-25T16:35:26Z) - Quantum algorithms for matrix operations and linear systems of equations [65.62256987706128]
We propose quantum algorithms for matrix operations using the "Sender-Receiver" model.
These quantum protocols can be used as subroutines in other quantum schemes.
arXiv Detail & Related papers (2022-02-10T08:12:20Z) - A Quantum Computer Amenable Sparse Matrix Equation Solver [0.0]
We study problems involving the solution of matrix equations, for which there currently exists no efficient, general quantum procedure.
We develop a generalization of the Harrow/Hassidim/Lloyd algorithm by providing an alternative unitary for eigenphase estimation.
This unitary has the advantage of being well defined for any arbitrary matrix equation, thereby allowing the solution procedure to be directly implemented on quantum hardware.
arXiv Detail & Related papers (2021-12-05T15:42:32Z) - Coordinate Linear Variance Reduction for Generalized Linear Programming [27.365677554732304]
We show that the linear structure in the problem can be used to design an efficient, scalable first-order algorithm.
textscclvr yields improved complexity results for (GLP) that depend on the max row norm of the linear constraint matrix in (GLP) rather than the spectral norm.
arXiv Detail & Related papers (2021-11-02T18:57:23Z) - Learning a Compressive Sensing Matrix with Structural Constraints via
Maximum Mean Discrepancy Optimization [17.104994036477308]
We introduce a learning-based algorithm to obtain a measurement matrix for compressive sensing related recovery problems.
Recent success of such metrics in neural network related topics motivate a solution of the problem based on machine learning.
arXiv Detail & Related papers (2021-10-14T08:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.