Generative AI in Color-Changing Systems: Re-Programmable 3D Object Textures with Material and Design Constraints
- URL: http://arxiv.org/abs/2404.17028v1
- Date: Thu, 25 Apr 2024 20:39:51 GMT
- Title: Generative AI in Color-Changing Systems: Re-Programmable 3D Object Textures with Material and Design Constraints
- Authors: Yunyi Zhu, Faraz Faruqi, Stefanie Mueller,
- Abstract summary: We discuss the possibilities of extending generative AI systems, with material and design constraints for reprogrammable surfaces with photochromic materials.
By constraining generative AI systems to colors and materials possible to be physically realized with photochromic dyes, we can create tools that would allow users to explore different viable patterns.
- Score: 13.440729439462014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advances in Generative AI tools have allowed designers to manipulate existing 3D models using text or image-based prompts, enabling creators to explore different design goals. Photochromic color-changing systems, on the other hand, allow for the reprogramming of surface texture of 3D models, enabling easy customization of physical objects and opening up the possibility of using object surfaces for data display. However, existing photochromic systems require the user to manually design the desired texture, inspect the simulation of the pattern on the object, and verify the efficacy of the generated pattern. These manual design, inspection, and verification steps prevent the user from efficiently exploring the design space of possible patterns. Thus, by designing an automated workflow desired for an end-to-end texture application process, we can allow rapid iteration on different practicable patterns. In this workshop paper, we discuss the possibilities of extending generative AI systems, with material and design constraints for reprogrammable surfaces with photochromic materials. By constraining generative AI systems to colors and materials possible to be physically realized with photochromic dyes, we can create tools that would allow users to explore different viable patterns, with text and image-based prompts. We identify two focus areas in this topic: photochromic material constraints and design constraints for data-encoded textures. We highlight the current limitations of using generative AI tools to create viable textures using photochromic material. Finally, we present possible approaches to augment generative AI methods to take into account the photochromic material constraints, allowing for the creation of viable photochromic textures rapidly and easily.
Related papers
- BlenderAlchemy: Editing 3D Graphics with Vision-Language Models [4.852796482609347]
A vision-based edit generator and state evaluator work together to find the correct sequence of actions to achieve the goal.
Inspired by the role of visual imagination in the human design process, we supplement the visual reasoning capabilities of Vision-Language Models with "imagined" reference images.
arXiv Detail & Related papers (2024-04-26T19:37:13Z) - TextureDreamer: Image-guided Texture Synthesis through Geometry-aware
Diffusion [64.49276500129092]
TextureDreamer is an image-guided texture synthesis method.
It can transfer relightable textures from a small number of input images to target 3D shapes across arbitrary categories.
arXiv Detail & Related papers (2024-01-17T18:55:49Z) - Single-Shot Implicit Morphable Faces with Consistent Texture
Parameterization [91.52882218901627]
We propose a novel method for constructing implicit 3D morphable face models that are both generalizable and intuitive for editing.
Our method improves upon photo-realism, geometry, and expression accuracy compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T17:58:40Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone.
Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps.
We adopt the neural implicit surface reconstruction method, which allows for high-quality mesh.
arXiv Detail & Related papers (2023-03-27T10:07:52Z) - TEXTure: Text-Guided Texturing of 3D Shapes [71.13116133846084]
We present TEXTure, a novel method for text-guided editing, editing, and transfer of textures for 3D shapes.
We define a trimap partitioning process that generates seamless 3D textures without requiring explicit surface textures.
arXiv Detail & Related papers (2023-02-03T13:18:45Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - Texture Generation Using Graph Generative Adversarial Network And
Differentiable Rendering [0.6439285904756329]
Novel texture synthesis for existing 3D mesh models is an important step towards photo realistic asset generation for simulators.
Existing methods inherently work in the 2D image space which is the projection of the 3D space from a given camera perspective.
We present a new system called a graph generative adversarial network (GGAN) that can generate textures which can be directly integrated into a given 3D mesh models with tools like Blender and Unreal Engine.
arXiv Detail & Related papers (2022-06-17T04:56:03Z) - Realistic Image Synthesis with Configurable 3D Scene Layouts [59.872657806747576]
We propose a novel approach to realistic-looking image synthesis based on a 3D scene layout.
Our approach takes a 3D scene with semantic class labels as input and trains a 3D scene painting network.
With the trained painting network, realistic-looking images for the input 3D scene can be rendered and manipulated.
arXiv Detail & Related papers (2021-08-23T09:44:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.