Motor Focus: Ego-Motion Prediction with All-Pixel Matching
- URL: http://arxiv.org/abs/2404.17031v1
- Date: Thu, 25 Apr 2024 20:45:39 GMT
- Title: Motor Focus: Ego-Motion Prediction with All-Pixel Matching
- Authors: Hao Wang, Jiayou Qin, Xiwen Chen, Ashish Bastola, John Suchanek, Zihao Gong, Abolfazl Razi,
- Abstract summary: We introduce an image-only method that applies motion analysis using optical flow with ego-motion compensation to predict Motor Focus.
This paper addresses the camera shaking issue in handheld and body-mounted devices which can severely degrade performance and accuracy.
This also provides a robust, real-time solution that adapts to the user's immediate environment.
- Score: 3.837186701755568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motion analysis plays a critical role in various applications, from virtual reality and augmented reality to assistive visual navigation. Traditional self-driving technologies, while advanced, typically do not translate directly to pedestrian applications due to their reliance on extensive sensor arrays and non-feasible computational frameworks. This highlights a significant gap in applying these solutions to human users since human navigation introduces unique challenges, including the unpredictable nature of human movement, limited processing capabilities of portable devices, and the need for directional responsiveness due to the limited perception range of humans. In this project, we introduce an image-only method that applies motion analysis using optical flow with ego-motion compensation to predict Motor Focus-where and how humans or machines focus their movement intentions. Meanwhile, this paper addresses the camera shaking issue in handheld and body-mounted devices which can severely degrade performance and accuracy, by applying a Gaussian aggregation to stabilize the predicted motor focus area and enhance the prediction accuracy of movement direction. This also provides a robust, real-time solution that adapts to the user's immediate environment. Furthermore, in the experiments part, we show the qualitative analysis of motor focus estimation between the conventional dense optical flow-based method and the proposed method. In quantitative tests, we show the performance of the proposed method on a collected small dataset that is specialized for motor focus estimation tasks.
Related papers
- Segment Any Motion in Videos [80.72424676419755]
We propose a novel approach for moving object segmentation that combines long-range trajectory motion cues with DINO-based semantic features.
Our model employs Spatio-Temporal Trajectory Attention and Motion-Semantic Decoupled Embedding to prioritize motion while integrating semantic support.
arXiv Detail & Related papers (2025-03-28T09:34:11Z) - ETTrack: Enhanced Temporal Motion Predictor for Multi-Object Tracking [4.250337979548885]
We propose a motion-based MOT approach with an enhanced temporal motion predictor, ETTrack.
Specifically, the motion predictor integrates a transformer model and a Temporal Convolutional Network (TCN) to capture short-term and long-term motion patterns.
We show ETTrack achieves a competitive performance compared with state-of-the-art trackers on DanceTrack and SportsMOT.
arXiv Detail & Related papers (2024-05-24T17:51:33Z) - Motion Segmentation for Neuromorphic Aerial Surveillance [42.04157319642197]
Event cameras offer superior temporal resolution, superior dynamic range, and minimal power requirements.
Unlike traditional frame-based sensors that capture redundant information at fixed intervals, event cameras asynchronously record pixel-level brightness changes.
We introduce a novel motion segmentation method that leverages self-supervised vision transformers on both event data and optical flow information.
arXiv Detail & Related papers (2024-05-24T04:36:13Z) - Ego-Motion Aware Target Prediction Module for Robust Multi-Object Tracking [2.7898966850590625]
We introduce a novel KF-based prediction module called Ego-motion Aware Target Prediction (EMAP)
Our proposed method decouples the impact of camera rotational and translational velocity from the object trajectories by reformulating the Kalman Filter.
EMAP remarkably drops the number of identity switches (IDSW) of OC-SORT and Deep OC-SORT by 73% and 21%, respectively.
arXiv Detail & Related papers (2024-04-03T23:24:25Z) - Treating Motion as Option with Output Selection for Unsupervised Video
Object Segmentation [17.71871884366252]
Video object segmentation (VOS) aims to detect the most salient object in a video without external guidance about the object.
Recent methods collaboratively use motion cues extracted from optical flow maps with appearance cues extracted from RGB images.
We propose a novel motion-as-option network by treating motion cues as optional.
arXiv Detail & Related papers (2023-09-26T09:34:13Z) - Event-Free Moving Object Segmentation from Moving Ego Vehicle [88.33470650615162]
Moving object segmentation (MOS) in dynamic scenes is an important, challenging, but under-explored research topic for autonomous driving.
Most segmentation methods leverage motion cues obtained from optical flow maps.
We propose to exploit event cameras for better video understanding, which provide rich motion cues without relying on optical flow.
arXiv Detail & Related papers (2023-04-28T23:43:10Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with
Point and Line Features [3.6355269783970394]
Event cameras are motion-activated sensors that capture pixel-level illumination changes instead of the intensity image with a fixed frame rate.
We propose a robust, high-accurate, and real-time optimization-based monocular event-based visual-inertial odometry (VIO) method.
arXiv Detail & Related papers (2022-09-25T06:14:12Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTS is an unsupervised SSL framework for selecting clips containing the same object.
PreViTS spatially constrains the frame regions to learn from and trains the model to locate meaningful objects.
We train a momentum contrastive (MoCo) encoder on VGG-Sound and Kinetics-400 datasets with PreViTS.
arXiv Detail & Related papers (2021-12-01T19:49:57Z) - CNN-based Omnidirectional Object Detection for HermesBot Autonomous
Delivery Robot with Preliminary Frame Classification [53.56290185900837]
We propose an algorithm for optimizing a neural network for object detection using preliminary binary frame classification.
An autonomous mobile robot with 6 rolling-shutter cameras on the perimeter providing a 360-degree field of view was used as the experimental setup.
arXiv Detail & Related papers (2021-10-22T15:05:37Z) - Moving Object Detection for Event-based vision using Graph Spectral
Clustering [6.354824287948164]
Moving object detection has been a central topic of discussion in computer vision for its wide range of applications.
We present an unsupervised Graph Spectral Clustering technique for Moving Object Detection in Event-based data.
We additionally show how the optimum number of moving objects can be automatically determined.
arXiv Detail & Related papers (2021-09-30T10:19:22Z) - Self-supervised Video Object Segmentation by Motion Grouping [79.13206959575228]
We develop a computer vision system able to segment objects by exploiting motion cues.
We introduce a simple variant of the Transformer to segment optical flow frames into primary objects and the background.
We evaluate the proposed architecture on public benchmarks (DAVIS2016, SegTrackv2, and FBMS59)
arXiv Detail & Related papers (2021-04-15T17:59:32Z) - DS-Net: Dynamic Spatiotemporal Network for Video Salient Object
Detection [78.04869214450963]
We propose a novel dynamic temporal-temporal network (DSNet) for more effective fusion of temporal and spatial information.
We show that the proposed method achieves superior performance than state-of-the-art algorithms.
arXiv Detail & Related papers (2020-12-09T06:42:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.