論文の概要: Near to Mid-term Risks and Opportunities of Open-Source Generative AI
- arxiv url: http://arxiv.org/abs/2404.17047v2
- Date: Fri, 24 May 2024 12:51:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-27 20:27:27.281662
- Title: Near to Mid-term Risks and Opportunities of Open-Source Generative AI
- Title(参考訳): オープンソース生成AIの中期的リスクと機会
- Authors: Francisco Eiras, Aleksandar Petrov, Bertie Vidgen, Christian Schroeder de Witt, Fabio Pizzati, Katherine Elkins, Supratik Mukhopadhyay, Adel Bibi, Botos Csaba, Fabro Steibel, Fazl Barez, Genevieve Smith, Gianluca Guadagni, Jon Chun, Jordi Cabot, Joseph Marvin Imperial, Juan A. Nolazco-Flores, Lori Landay, Matthew Jackson, Paul Röttger, Philip H. S. Torr, Trevor Darrell, Yong Suk Lee, Jakob Foerster,
- Abstract要約: Generative AIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の影響の可能性は、潜在的なリスクに関する活発な議論を引き起こし、より厳格な規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
- 参考スコア(独自算出の注目度): 94.06233419171016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the next few years, applications of Generative AI are expected to revolutionize a number of different areas, ranging from science & medicine to education. The potential for these seismic changes has triggered a lively debate about potential risks and resulted in calls for tighter regulation, in particular from some of the major tech companies who are leading in AI development. This regulation is likely to put at risk the budding field of open-source Generative AI. We argue for the responsible open sourcing of generative AI models in the near and medium term. To set the stage, we first introduce an AI openness taxonomy system and apply it to 40 current large language models. We then outline differential benefits and risks of open versus closed source AI and present potential risk mitigation, ranging from best practices to calls for technical and scientific contributions. We hope that this report will add a much needed missing voice to the current public discourse on near to mid-term AI safety and other societal impact.
- Abstract(参考訳): 今後数年間で、ジェネレーティブAIの応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震的な変化の可能性は、潜在的なリスクについて活発に議論を巻き起こし、特にAI開発をリードする大手テック企業からの厳しい規制を要求した。
この規制は、オープンソースのジェネレーティブAIの誕生する分野を危険にさらしている可能性が高い。
我々は、生成的AIモデルの短期的および中期的オープンソース化の責任について論じる。
ステージを設定するために、まずAIオープンネス分類システムを導入し、それを現在の40の大規模言語モデルに適用する。
次に、オープンソースとクローズドソースAIの異なる利点とリスクを概説し、ベストプラクティスから技術的および科学的貢献の要求まで、潜在的なリスク軽減を提示します。
このレポートは、現在公の場でAIの安全性やその他の社会的影響に関する議論に欠如している声を加えることを願っている。
関連論文リスト
- Risks and Opportunities of Open-Source Generative AI [64.86989162783648]
Generative AI(Gen AI)の応用は、科学や医学、教育など、さまざまな分野に革命をもたらすことが期待されている。
こうした地震の変化の可能性は、この技術の潜在的なリスクについて活発に議論を巻き起こし、より厳格な規制を要求した。
この規制は、オープンソースの生成AIの誕生する分野を危険にさらす可能性がある。
論文 参考訳(メタデータ) (2024-05-14T13:37:36Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - Control Risk for Potential Misuse of Artificial Intelligence in Science [85.91232985405554]
我々は、科学におけるAI誤用の危険性の認識を高めることを目的としている。
化学科学における誤用の実例を取り上げる。
我々は、科学におけるAIモデルの誤用リスクを制御するSciGuardというシステムを提案する。
論文 参考訳(メタデータ) (2023-12-11T18:50:57Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - AI and the EU Digital Markets Act: Addressing the Risks of Bigness in
Generative AI [4.889410481341167]
本稿では、特定のAIソフトウェアをコアプラットフォームサービスとして統合し、特定の開発者をDMAの下でゲートキーパーとして分類する。
EUは、生成AI固有のルールとDMA修正の可能性を検討するため、生成AIサービスの多様性とオープン性に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-07-07T16:50:08Z) - An Overview of Catastrophic AI Risks [38.84933208563934]
本稿では,破滅的なAIリスクの主な要因について概説し,その要因を4つのカテゴリに分類する。
個人やグループが意図的にAIを使用して危害を及ぼす悪用; 競争環境がアクターに安全でないAIを配置させたり、AIに制御を強制するAIレース。
組織的リスクは 人的要因と複雑なシステムが 破滅的な事故の 可能性を高めることを示しています
不正なAIは、人間よりもはるかにインテリジェントなエージェントを制御することの難しさを説明する。
論文 参考訳(メタデータ) (2023-06-21T03:35:06Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
AIフェアネスを詳しく見て、AIフェアネスの欠如が、時間の経過とともにバイアスの深化につながるかを分析します。
偏りのあるモデルが特定のグループに対してよりネガティブな現実的な結果をもたらすかについて議論する。
問題が続くと、他のリスクとの相互作用によって強化され、社会不安という形で社会に深刻な影響を及ぼす可能性がある。
論文 参考訳(メタデータ) (2023-04-16T11:22:59Z) - Current and Near-Term AI as a Potential Existential Risk Factor [5.1806669555925975]
我々は、現在および短期的な人工知能技術が、現実的なリスクに寄与する可能性があるという考えを問題視する。
我々は、すでに文書化されているAIの効果が、実在するリスク要因として機能する、という仮説を提案する。
私たちの主な貢献は、潜在的なAIリスク要因とそれら間の因果関係の展示です。
論文 参考訳(メタデータ) (2022-09-21T18:56:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。