Detection of Peri-Pancreatic Edema using Deep Learning and Radiomics Techniques
- URL: http://arxiv.org/abs/2404.17064v1
- Date: Thu, 25 Apr 2024 22:20:17 GMT
- Title: Detection of Peri-Pancreatic Edema using Deep Learning and Radiomics Techniques
- Authors: Ziliang Hong, Debesh Jha, Koushik Biswas, Zheyuan Zhang, Yury Velichko, Cemal Yazici, Temel Tirkes, Amir Borhani, Baris Turkbey, Alpay Medetalibeyoglu, Gorkem Durak, Ulas Bagci,
- Abstract summary: This study textitintroduces a novel CT dataset sourced from 255 patients with pancreatic diseases, featuring annotated pancreas segmentation masks and corresponding diagnostic labels for peri-pancreatic edema condition.
We first evaluate the efficacy of the textitLinTransUNet model, a linear Transformer based segmentation algorithm, to segment the pancreas accurately from CT imaging data.
Then, we use segmented pancreas regions with two distinctive machine learning classifiers to identify existence of peri-pancreatic edema: deep learning-based models and a radiomics-based eXtreme Gradient Boosting (XGBoost)
- Score: 3.6663216419047964
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Identifying peri-pancreatic edema is a pivotal indicator for identifying disease progression and prognosis, emphasizing the critical need for accurate detection and assessment in pancreatitis diagnosis and management. This study \textit{introduces a novel CT dataset sourced from 255 patients with pancreatic diseases, featuring annotated pancreas segmentation masks and corresponding diagnostic labels for peri-pancreatic edema condition}. With the novel dataset, we first evaluate the efficacy of the \textit{LinTransUNet} model, a linear Transformer based segmentation algorithm, to segment the pancreas accurately from CT imaging data. Then, we use segmented pancreas regions with two distinctive machine learning classifiers to identify existence of peri-pancreatic edema: deep learning-based models and a radiomics-based eXtreme Gradient Boosting (XGBoost). The LinTransUNet achieved promising results, with a dice coefficient of 80.85\%, and mIoU of 68.73\%. Among the nine benchmarked classification models for peri-pancreatic edema detection, \textit{Swin-Tiny} transformer model demonstrated the highest recall of $98.85 \pm 0.42$ and precision of $98.38\pm 0.17$. Comparatively, the radiomics-based XGBoost model achieved an accuracy of $79.61\pm4.04$ and recall of $91.05\pm3.28$, showcasing its potential as a supplementary diagnostic tool given its rapid processing speed and reduced training time. Our code is available \url{https://github.com/NUBagciLab/Peri-Pancreatic-Edema-Detection}.
Related papers
- Capsule Endoscopy Multi-classification via Gated Attention and Wavelet Transformations [1.5146068448101746]
Abnormalities in the gastrointestinal tract significantly influence the patient's health and require a timely diagnosis.
The work presents the process of developing and evaluating a novel model designed to classify gastrointestinal anomalies from a video frame.
integration of Omni Dimensional Gated Attention (OGA) mechanism and Wavelet transformation techniques into the model's architecture allowed the model to focus on the most critical areas.
The model's performance is benchmarked against two base models, VGG16 and ResNet50, demonstrating its enhanced ability to identify and classify a range of gastrointestinal abnormalities accurately.
arXiv Detail & Related papers (2024-10-25T08:01:35Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Thyroidiomics: An Automated Pipeline for Segmentation and Classification of Thyroid Pathologies from Scintigraphy Images [0.23960026858846614]
The objective of this study was to develop an automated pipeline that enhances thyroid disease classification using thyroid scintigraphy images.
Anterior thyroid scintigraphy images from 2,643 patients were collected and categorized into diffuse goiter (DG), multinodal goiter (MNG), and thyroiditis (TH)
The pipeline demonstrated comparable performance to physician segmentations on several classification metrics across different classes.
arXiv Detail & Related papers (2024-07-14T21:29:28Z) - An Attention Based Pipeline for Identifying Pre-Cancer Lesions in Head and Neck Clinical Images [1.0957311485487375]
Head and neck cancer is diagnosed in specialist centres after a surgical biopsy, but there is a potential for these to be missed leading to delayed diagnosis.
We present an attention based pipeline that identifies suspected lesions, segments, and classifies them as non-dysplastic, dysplastic and cancerous lesions.
arXiv Detail & Related papers (2024-05-03T09:02:17Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) is proposed to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss.
PLAN achieves 95% and 96% in patient-level sensitivity and specificity.
On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation.
arXiv Detail & Related papers (2023-07-17T06:21:45Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - EGFR Mutation Prediction of Lung Biopsy Images using Deep Learning [1.793983482813105]
In this work, we used customized deep learning pipelines with weak supervision to identify the morphological correlates of EGFR mutation.
With our pipeline, we achieved an average area under the curve (AUC) of 0.964 for tumor detection, and 0.942 for histological subtyping between adenocarcinoma and squamous cell carcinoma.
For EGFR detection, we achieved an average AUC of 0.864 on the TCGA dataset and 0.783 on the dataset from India.
arXiv Detail & Related papers (2022-08-26T08:56:33Z) - TotalSegmentator: robust segmentation of 104 anatomical structures in CT
images [48.50994220135258]
We present a deep learning segmentation model for body CT images.
The model can segment 104 anatomical structures relevant for use cases such as organ volumetry, disease characterization, and surgical or radiotherapy planning.
arXiv Detail & Related papers (2022-08-11T15:16:40Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.