EGFR Mutation Prediction of Lung Biopsy Images using Deep Learning
- URL: http://arxiv.org/abs/2208.12506v1
- Date: Fri, 26 Aug 2022 08:56:33 GMT
- Title: EGFR Mutation Prediction of Lung Biopsy Images using Deep Learning
- Authors: Ravi Kant Gupta, Shivani Nandgaonkar, Nikhil Cherian Kurian, Swapnil
Rane, Amit Sethi
- Abstract summary: In this work, we used customized deep learning pipelines with weak supervision to identify the morphological correlates of EGFR mutation.
With our pipeline, we achieved an average area under the curve (AUC) of 0.964 for tumor detection, and 0.942 for histological subtyping between adenocarcinoma and squamous cell carcinoma.
For EGFR detection, we achieved an average AUC of 0.864 on the TCGA dataset and 0.783 on the dataset from India.
- Score: 1.793983482813105
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The standard diagnostic procedures for targeted therapies in lung cancer
treatment involve histological subtyping and subsequent detection of key driver
mutations, such as EGFR. Even though molecular profiling can uncover the driver
mutation, the process is often expensive and time-consuming. Deep
learning-oriented image analysis offers a more economical alternative for
discovering driver mutations directly from whole slide images (WSIs). In this
work, we used customized deep learning pipelines with weak supervision to
identify the morphological correlates of EGFR mutation from hematoxylin and
eosin-stained WSIs, in addition to detecting tumor and histologically subtyping
it. We demonstrate the effectiveness of our pipeline by conducting rigorous
experiments and ablation studies on two lung cancer datasets - TCGA and a
private dataset from India. With our pipeline, we achieved an average area
under the curve (AUC) of 0.964 for tumor detection, and 0.942 for histological
subtyping between adenocarcinoma and squamous cell carcinoma on the TCGA
dataset. For EGFR detection, we achieved an average AUC of 0.864 on the TCGA
dataset and 0.783 on the dataset from India. Our key learning points include
the following. Firstly, there is no particular advantage of using a feature
extractor layers trained on histology, if one is going to fine-tune the feature
extractor on the target dataset. Secondly, selecting patches with high
cellularity, presumably capturing tumor regions, is not always helpful, as the
sign of a disease class may be present in the tumor-adjacent stroma.
Related papers
- Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide images (WSIs) are being widely used to develop deep learning-based diagnostic solutions, especially for precision oncology.
Most of these diagnostic softwares are vulnerable to biases and impurities in the training and test data which can lead to inaccurate diagnoses.
We introduce HistoROI, a robust yet lightweight deep learning-based classifier to segregate WSI into six broad tissue regions.
arXiv Detail & Related papers (2024-09-29T07:08:45Z) - Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
Computer-aided diagnosis can help with early lung nodul detection and facilitate subsequent nodule characterization.
We propose CADe, for segmenting lung nodules in a zero-shot manner using a variant of the Segment Anything Model called MedSAM.
We also propose, CADx, a method for the nodule characterization as benign/malignant by making a gallery of radiomic features and aligning image-feature pairs through contrastive learning.
arXiv Detail & Related papers (2024-07-02T19:30:25Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - Exploiting Liver CT scans in Colorectal Carcinoma genomics mutation
classification [0.0]
We propose the first DeepLearning-based exploration, to our knowledge, of such classification approach from the patient medical imaging.
Our method is able to identify CRC RAS mutation family from CT images with 0.73 F1 score.
arXiv Detail & Related papers (2024-01-25T14:40:58Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Development of a Multi-Task Learning V-Net for Pulmonary Lobar
Segmentation on Computed Tomography and Application to Diseased Lungs [0.19573380763700707]
Diseased lung regions often produce high-density zones on CT images, limiting an algorithm's execution to specify damaged lobes.
This impact motivated developing an improved machine learning method to segment lung lobes.
The approach can be readily adopted in the clinical setting as a robust tool for radiologists.
arXiv Detail & Related papers (2021-05-11T17:10:25Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Harvesting, Detecting, and Characterizing Liver Lesions from Large-scale
Multi-phase CT Data via Deep Dynamic Texture Learning [24.633802585888812]
We propose a fully-automated and multi-stage liver tumor characterization framework for dynamic contrast computed tomography (CT)
Our system comprises four sequential processes of tumor proposal detection, tumor harvesting, primary tumor site selection, and deep texture-based tumor characterization.
arXiv Detail & Related papers (2020-06-28T19:55:34Z) - Spatio-spectral deep learning methods for in-vivo hyperspectral
laryngeal cancer detection [49.32653090178743]
Early detection of head and neck tumors is crucial for patient survival.
Hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors.
We present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI.
arXiv Detail & Related papers (2020-04-21T17:07:18Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.