Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach
- URL: http://arxiv.org/abs/2404.17077v1
- Date: Thu, 25 Apr 2024 23:03:20 GMT
- Title: Compiler for Distributed Quantum Computing: a Reinforcement Learning Approach
- Authors: Panagiotis Promponas, Akrit Mudvari, Luca Della Chiesa, Paul Polakos, Louis Samuel, Leandros Tassiulas,
- Abstract summary: We introduce a novel compiler that prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs.
We present a real-time, adaptive approach to compiler design, accounting for the nature of entanglement generation and the operational demands of quantum circuits.
Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler.
- Score: 6.347685922582191
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical realization of quantum programs that require large-scale qubit systems is hindered by current technological limitations. Distributed Quantum Computing (DQC) presents a viable path to scalability by interconnecting multiple Quantum Processing Units (QPUs) through quantum links, facilitating the distributed execution of quantum circuits. In DQC, EPR pairs are generated and shared between distant QPUs, which enables quantum teleportation and facilitates the seamless execution of circuits. A primary obstacle in DQC is the efficient mapping and routing of logical qubits to physical qubits across different QPUs, necessitating sophisticated strategies to overcome hardware constraints and optimize communication. We introduce a novel compiler that, unlike existing approaches, prioritizes reducing the expected execution time by jointly managing the generation and routing of EPR pairs, scheduling remote operations, and injecting SWAP gates to facilitate the execution of local gates. We present a real-time, adaptive approach to compiler design, accounting for the stochastic nature of entanglement generation and the operational demands of quantum circuits. Our contributions are twofold: (i) we model the optimal compiler for DQC using a Markov Decision Process (MDP) formulation, establishing the existence of an optimal algorithm, and (ii) we introduce a constrained Reinforcement Learning (RL) method to approximate this optimal compiler, tailored to the complexities of DQC environments. Our simulations demonstrate that Double Deep Q-Networks (DDQNs) are effective in learning policies that minimize the depth of the compiled circuit, leading to a lower expected execution time and likelihood of successful operation before qubits decohere.
Related papers
- ECDQC: Efficient Compilation for Distributed Quantum Computing with Linear Layout [6.382954852270525]
We propose an efficient compilation method for distributed quantum computing (DQC) using the Linear Nearest Neighbor (LNN) architecture.
Our approach significantly decreases compilation time, gate count, and circuit depth, improving robustness for large-scale quantum computations.
arXiv Detail & Related papers (2024-10-31T12:07:46Z) - Resource Management and Circuit Scheduling for Distributed Quantum Computing Interconnect Networks [4.0985912998349345]
Distributed quantum computing (DQC) has emerged as a promising approach to overcome the scalability limitations of monolithic quantum processors.
This paper addresses the problem of resource allocation in such networks, focusing on computing resource management in a quantum farm setting.
We propose a multi-objective optimisation algorithm for optimal QPU allocation that aims to minimise the degradation caused by inter-QPU communication latencies.
arXiv Detail & Related papers (2024-09-19T11:39:46Z) - Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
We develop a reinforcement learning-based quantum compiler for a superconducting processor.
We demonstrate its capability of discovering novel and hardware-amenable circuits with short lengths.
Our study exemplifies the codesign of the software with hardware for efficient quantum compilation.
arXiv Detail & Related papers (2024-06-18T01:49:48Z) - Attention-Based Deep Reinforcement Learning for Qubit Allocation in Modular Quantum Architectures [1.8781124875646162]
This research contributes to the advancement of scalable quantum computing systems by introducing a novel learning-based approach for efficient quantum circuit compilation and mapping.
In this work, we propose a novel approach employing Deep Reinforcement Learning (DRL) methods to learn theses for a specific multi-core architecture.
arXiv Detail & Related papers (2024-06-17T12:09:11Z) - A Genetic Approach to Minimising Gate and Qubit Teleportations for Multi-Processor Quantum Circuit Distribution [6.207327488572861]
Distributed Quantum Computing (DQC) provides a means for scaling available quantum computation by interconnecting multiple quantum processor units (QPUs)
A key challenge in this domain is efficiently allocating logical qubits from quantum circuits to the physical qubits within QPUs, a task known to be NP-hard.
Traditional approaches have sought to reduce the number of required Bell pairs for executing non-local CNOT operations, a form of gate teleportation.
We introduce a novel meta-heuristic algorithm to minimise the network cost of executing a quantum circuit.
arXiv Detail & Related papers (2024-05-09T16:03:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Elastic Entangled Pair and Qubit Resource Management in Quantum Cloud
Computing [73.7522199491117]
Quantum cloud computing (QCC) offers a promising approach to efficiently provide quantum computing resources.
The fluctuations in user demand and quantum circuit requirements are challenging for efficient resource provisioning.
We propose a resource allocation model to provision quantum computing and networking resources.
arXiv Detail & Related papers (2023-07-25T00:38:46Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Supervised Learning Enhanced Quantum Circuit Transformation [6.72166630054365]
A quantum circuit transformation (QCT) is required when executing a quantum program in a real quantum processing unit (QPU)
We propose a framework that uses a policy artificial neural network (ANN) trained by supervised learning on shallow circuits to help existing QCT algorithms select the most promising SWAP gate.
arXiv Detail & Related papers (2021-10-06T20:32:28Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.