Level attraction from interference in two-tone driving
- URL: http://arxiv.org/abs/2404.17108v1
- Date: Fri, 26 Apr 2024 01:55:04 GMT
- Title: Level attraction from interference in two-tone driving
- Authors: Alan Gardin, Guillaume Bourcin, Christian Person, Christophe Fumeaux, Romain Lebrun, Isabella Boventer, Giuseppe C. Tettamanzi, Vincent Castel,
- Abstract summary: We show how the physics of coherent and dissipative couplings can be analysed theoretically.
We deduce that the observation of level attraction originates from interferences due to the measurement setup, and not dissipative coupling.
- Score: 0.06022769903412459
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Coherent and dissipative couplings, respectively characterised by energy level repulsion and attraction, each have different applications for quantum information processing. Thus, a system in which both coherent and dissipative couplings are tunable on-demand and in-situ is tantalising. A first step towards this goal is the two-tone driving of two bosonic modes, whose experimental signature was shown to exhibit controllable level repulsion and attraction by changing the phase and amplitude of one drive. However, whether the underlying physics is that of coherent and dissipative couplings has not been clarified, and cannot be concluded solely from the measured resonances (or anti-resonances) of the system. Here, we show how the physics at play can be analysed theoretically. Combining this theory with realistic finite-element simulations, we deduce that the observation of level attraction originates from interferences due to the measurement setup, and not dissipative coupling. Beyond the clarification of a novel origin for level attraction attributed to interference, our work demonstrate how effective Hamiltonians can be derived to appropriately describe the physics.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Shortcut-to-adiabaticity for coupled harmonic oscillators [0.0]
Shortcuts to adiabaticity methods allow to obtain desirable states of adiabatic dynamics.
Problem of considering this technique for two-coupled bosonic modes is addressed.
Problem of considering this technique for two-coupled bosonic modes is addressed.
arXiv Detail & Related papers (2023-10-14T12:58:59Z) - Unify the effect of anharmonicity in double-wells and anharmonic oscillators [6.529171771120453]
We study the effect of anharmonicity in quantum anharmonic oscillators, by computing the energy gap between the ground and the 1st excited state.
We give an explanation of this connection of their anharmonicity from the viewpoint of quantum phase transitions.
arXiv Detail & Related papers (2023-09-17T13:26:44Z) - Probing and harnessing photonic Fermi arc surface states using
light-matter interactions [62.997667081978825]
We show how to image the Fermi arcs by studying the spontaneous decay of one or many emitters coupled to the system's border.
We demonstrate that the Fermi arc surface states can act as a robust quantum link.
arXiv Detail & Related papers (2022-10-17T13:17:55Z) - Influence of polarization and the environment on wave-particle duality [0.0]
Wave-particle duality ascribes mutually exclusive behaviors to quantum systems that cannot be observed simultaneously.
Here, we use quantum information-theoretic tools to derive quantifiers of two properties, which account for the combined influence of path probability and polarization.
The derived quantities can work as probes in the study of open quantum dynamics.
arXiv Detail & Related papers (2022-04-29T20:41:26Z) - Bell-state generation for spin qubits via dissipative coupling [3.011018394325566]
We investigate the dynamics of two spin qubits interacting with a magnetic medium.
We show how a sizable long-lived entanglement can be established via the magnetic environment.
Our study may find applications in quantum information science, quantum spintronics, and for sensing of nonlocal quantum correlations.
arXiv Detail & Related papers (2021-08-16T22:36:48Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Dissipative state transfer and Maxwell's demon in single quantum
trajectories: Excitation transfer between two noninteracting qubits via
unbalanced dissipation rates [0.0]
We introduce a protocol to transfer excitations between two noninteracting qubits via purely dissipative processes.
The fundamental ingredients are the presence of collective (i.e. nonlocal) dissipation and unbalanced local dissipation rates.
The resulting quantum trajectories show that the measurement backaction changes the system wave function.
arXiv Detail & Related papers (2021-01-27T18:44:30Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Quantum Zeno effect appears in stages [64.41511459132334]
In the quantum Zeno effect, quantum measurements can block the coherent oscillation of a two level system by freezing its state to one of the measurement eigenstates.
We show that the onset of the Zeno regime is marked by a $textitcascade of transitions$ in the system dynamics as the measurement strength is increased.
arXiv Detail & Related papers (2020-03-23T18:17:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.