論文の概要: A Unified Label-Aware Contrastive Learning Framework for Few-Shot Named Entity Recognition
- arxiv url: http://arxiv.org/abs/2404.17178v1
- Date: Fri, 26 Apr 2024 06:19:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:54:01.463501
- Title: A Unified Label-Aware Contrastive Learning Framework for Few-Shot Named Entity Recognition
- Title(参考訳): ファウショット名前付きエンティティ認識のための統一ラベル認識コントラスト学習フレームワーク
- Authors: Haojie Zhang, Yimeng Zhuang,
- Abstract要約: ラベル認識型トークンレベルのコントラスト学習フレームワークを提案する。
提案手法は,ラベルのセマンティクスを接尾辞のプロンプトとして活用することでコンテキストを豊かにする。
コンテキストネイティブとコンテキストラベルの対比学習目標を同時に最適化する。
- 参考スコア(独自算出の注目度): 6.468625143772815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot Named Entity Recognition (NER) aims to extract named entities using only a limited number of labeled examples. Existing contrastive learning methods often suffer from insufficient distinguishability in context vector representation because they either solely rely on label semantics or completely disregard them. To tackle this issue, we propose a unified label-aware token-level contrastive learning framework. Our approach enriches the context by utilizing label semantics as suffix prompts. Additionally, it simultaneously optimizes context-context and context-label contrastive learning objectives to enhance generalized discriminative contextual representations.Extensive experiments on various traditional test domains (OntoNotes, CoNLL'03, WNUT'17, GUM, I2B2) and the large-scale few-shot NER dataset (FEWNERD) demonstrate the effectiveness of our approach. It outperforms prior state-of-the-art models by a significant margin, achieving an average absolute gain of 7% in micro F1 scores across most scenarios. Further analysis reveals that our model benefits from its powerful transfer capability and improved contextual representations.
- Abstract(参考訳): 名前付きエンティティ認識(NER)は、ラベル付きサンプルの限られた数だけを使用して名前付きエンティティを抽出することを目的としている。
既存のコントラスト学習手法は、ラベルのセマンティクスのみに依存しているか、完全に無視しているため、文脈ベクトル表現の区別が不十分な場合が多い。
この問題に対処するために,ラベルを意識したトークンレベルのコントラスト学習フレームワークを提案する。
提案手法は,ラベルのセマンティクスを接尾辞のプロンプトとして活用することでコンテキストを豊かにする。
さらに、コンテキストコンテキストと文脈ラベルの対比学習目標を同時に最適化し、一般化された識別的文脈表現を強化するとともに、様々な従来のテスト領域(OntoNotes, CoNLL'03, WNUT'17, GUM, I2B2)と大規模数ショットNERデータセット(FEWNERD)による実験により、我々のアプローチの有効性を実証した。
従来の最先端モデルよりも大幅に優れており、ほとんどのシナリオで平均7%のマイクロF1スコアを達成している。
さらなる分析により、我々のモデルは、その強力な転送能力と文脈表現の改善から恩恵を受けていることが明らかとなった。
関連論文リスト
- CLLMFS: A Contrastive Learning enhanced Large Language Model Framework for Few-Shot Named Entity Recognition [3.695767900907561]
CLLMFSは、Few-Shot Named Entity RecognitionのためのContrastive LearningEnhanced Large Language Modelフレームワークである。
Low-Rank Adaptation (LoRA)と、数発のNER用に特別に調整された対照的な学習メカニズムを統合している。
提案手法は,F1スコアの現行性能を2.58%から97.74%まで向上させた。
論文 参考訳(メタデータ) (2024-08-23T04:44:05Z) - Robust Representation Learning for Unreliable Partial Label Learning [86.909511808373]
部分ラベル学習(Partial Label Learning, PLL)は、弱い教師付き学習の一種で、各トレーニングインスタンスに候補ラベルのセットが割り当てられる。
これはUn Reliable partial Label Learning (UPLL) と呼ばれ、部分ラベルの本質的な信頼性の欠如とあいまいさにより、さらなる複雑さをもたらす。
本研究では,信頼できない部分ラベルに対するモデル強化を支援するために,信頼性に欠けるコントラスト学習を活用するUnreliability-Robust Representation Learning framework(URRL)を提案する。
論文 参考訳(メタデータ) (2023-08-31T13:37:28Z) - DualCoOp++: Fast and Effective Adaptation to Multi-Label Recognition
with Limited Annotations [79.433122872973]
低ラベル体制における多ラベル画像認識は、大きな課題と実践的重要性の課題である。
我々は、何百万もの補助的な画像テキストペアで事前訓練されたテキストと視覚的特徴の強力なアライメントを活用する。
Evidence-guided Dual Context Optimization (DualCoOp++) という,効率的かつ効果的なフレームワークを導入する。
論文 参考訳(メタデータ) (2023-08-03T17:33:20Z) - Semantic Contrastive Bootstrapping for Single-positive Multi-label
Recognition [36.3636416735057]
本研究では,意味的コントラスト型ブートストラップ法(Scob)を用いて,オブジェクト間の関係を徐々に回復する手法を提案する。
次に、アイコン的オブジェクトレベルの表現を抽出する再帰的セマンティックマスク変換器を提案する。
大規模な実験結果から,提案手法が最先端のモデルを超えていることが示唆された。
論文 参考訳(メタデータ) (2023-07-15T01:59:53Z) - Exploring Structured Semantic Prior for Multi Label Recognition with
Incomplete Labels [60.675714333081466]
不完全なラベルを持つマルチラベル認識(MLR)は非常に難しい。
最近の研究は、視覚言語モデルであるCLIPにおける画像とラベルの対応を探り、不十分なアノテーションを補うことを目指している。
我々は,MLRにおけるラベル管理の欠如を,構造化されたセマンティクスを導出することにより,不完全なラベルで修復することを提唱する。
論文 参考訳(メタデータ) (2023-03-23T12:39:20Z) - Focusing on Potential Named Entities During Active Label Acquisition [0.0]
名前付きエンティティ認識(NER)は、構造化されていないテキスト中の名前付きエンティティの参照を識別することを目的としている。
多くのドメイン固有のNERアプリケーションは、まだかなりの量のラベル付きデータを要求する。
本稿では,長すぎるか短すぎる文をペナル化するための,データ駆動正規化手法を提案する。
論文 参考訳(メタデータ) (2021-11-06T09:04:16Z) - Multi-Label Image Classification with Contrastive Learning [57.47567461616912]
コントラスト学習の直接適用は,複数ラベルの場合においてほとんど改善できないことを示す。
完全教師付き環境下でのコントラスト学習を用いたマルチラベル分類のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-24T15:00:47Z) - Dynamic Semantic Matching and Aggregation Network for Few-shot Intent
Detection [69.2370349274216]
利用可能な注釈付き発話が不足しているため、インテント検出は困難である。
セマンティック成分はマルチヘッド自己認識によって発話から蒸留される。
本手法はラベル付きインスタンスとラベルなしインスタンスの両方の表現を強化するための総合的なマッチング手段を提供する。
論文 参考訳(メタデータ) (2020-10-06T05:16:38Z) - Debiased Contrastive Learning [64.98602526764599]
我々は,同ラベルデータポイントのサンプリングを補正する,偏りのあるコントラスト目的の開発を行う。
実証的に、提案する目的は、視覚、言語、強化学習ベンチマークにおける表現学習の最先端を一貫して上回る。
論文 参考訳(メタデータ) (2020-07-01T04:25:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。