Low-Rank Knowledge Decomposition for Medical Foundation Models
- URL: http://arxiv.org/abs/2404.17184v1
- Date: Fri, 26 Apr 2024 06:30:47 GMT
- Title: Low-Rank Knowledge Decomposition for Medical Foundation Models
- Authors: Yuhang Zhou, Haolin Li, Siyuan Du, Jiangchao Yao, Ya Zhang, Yanfeng Wang,
- Abstract summary: We develop a new perspective called Knowledge Decomposition'' to improve the performance on specific medical tasks.
Low-Rank Knowledge Decomposition (LoRKD) incorporates low-rank expert modules and the efficient knowledge separation convolution.
Experiments show that decomposed models perform well in terms of performance and transferability, even surpassing the original foundation models.
- Score: 37.52464627899668
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The popularity of large-scale pre-training has promoted the development of medical foundation models. However, some studies have shown that although foundation models exhibit strong general feature extraction capabilities, their performance on specific tasks is still inferior to task-specific methods. In this paper, we explore a new perspective called ``Knowledge Decomposition'' to improve the performance on specific medical tasks, which deconstruct the foundation model into multiple lightweight expert models, each dedicated to a particular task, with the goal of improving specialization while concurrently mitigating resource expenditure. To accomplish the above objective, we design a novel framework named Low-Rank Knowledge Decomposition (LoRKD), which explicitly separates graidents by incorporating low-rank expert modules and the efficient knowledge separation convolution. Extensive experimental results demonstrate that the decomposed models perform well in terms of performance and transferability, even surpassing the original foundation models.
Related papers
- KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study [64.06777376676513]
We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-09-10T08:04:11Z) - FEDKIM: Adaptive Federated Knowledge Injection into Medical Foundation Models [54.09244105445476]
This study introduces a novel knowledge injection approach, FedKIM, to scale the medical foundation model within a federated learning framework.
FedKIM leverages lightweight local models to extract healthcare knowledge from private data and integrates this knowledge into a centralized foundation model.
Our experiments across twelve tasks in seven modalities demonstrate the effectiveness of FedKIM in various settings.
arXiv Detail & Related papers (2024-08-17T15:42:29Z) - On the Out of Distribution Robustness of Foundation Models in Medical
Image Segmentation [47.95611203419802]
Foundations for vision and language, pre-trained on extensive sets of natural image and text data, have emerged as a promising approach.
We compare the generalization performance to unseen domains of various pre-trained models after being fine-tuned on the same in-distribution dataset.
We further developed a new Bayesian uncertainty estimation for frozen models and used them as an indicator to characterize the model's performance on out-of-distribution data.
arXiv Detail & Related papers (2023-11-18T14:52:10Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.