High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study
- URL: http://arxiv.org/abs/2409.06305v1
- Date: Tue, 10 Sep 2024 08:04:11 GMT
- Title: High-Performance Few-Shot Segmentation with Foundation Models: An Empirical Study
- Authors: Shijie Chang, Lihe Zhang, Huchuan Lu,
- Abstract summary: We develop a few-shot segmentation (FSS) framework based on foundation models.
To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence.
Experiments on two widely used datasets demonstrate the effectiveness of our approach.
- Score: 64.06777376676513
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing few-shot segmentation (FSS) methods mainly focus on designing novel support-query matching and self-matching mechanisms to exploit implicit knowledge in pre-trained backbones. However, the performance of these methods is often constrained by models pre-trained on classification tasks. The exploration of what types of pre-trained models can provide more beneficial implicit knowledge for FSS remains limited. In this paper, inspired by the representation consistency of foundational computer vision models, we develop a FSS framework based on foundation models. To be specific, we propose a simple approach to extract implicit knowledge from foundation models to construct coarse correspondence and introduce a lightweight decoder to refine coarse correspondence for fine-grained segmentation. We systematically summarize the performance of various foundation models on FSS and discover that the implicit knowledge within some of these models is more beneficial for FSS than models pre-trained on classification tasks. Extensive experiments on two widely used datasets demonstrate the effectiveness of our approach in leveraging the implicit knowledge of foundation models. Notably, the combination of DINOv2 and DFN exceeds previous state-of-the-art methods by 17.5% on COCO-20i. Code is available at https://github.com/DUT-CSJ/FoundationFSS.
Related papers
- Bayesian Exploration of Pre-trained Models for Low-shot Image Classification [14.211305168954594]
This work proposes a simple and effective probabilistic model ensemble framework based on Gaussian processes.
We achieve the integration of prior knowledge by specifying the mean function with CLIP and the kernel function.
We demonstrate that our method consistently outperforms competitive ensemble baselines regarding predictive performance.
arXiv Detail & Related papers (2024-03-30T10:25:28Z) - Robust Fine-Tuning of Vision-Language Models for Domain Generalization [6.7181844004432385]
Foundation models have impressive zero-shot inference capabilities and robustness under distribution shifts.
We present a new recipe for few-shot fine-tuning of the popular vision-language foundation model CLIP.
Our experimentation demonstrates that, while zero-shot CLIP fails to match performance of trained vision models on more complex benchmarks, few-shot CLIP fine-tuning outperforms its vision-only counterparts.
arXiv Detail & Related papers (2023-11-03T20:50:40Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - FD-Align: Feature Discrimination Alignment for Fine-tuning Pre-Trained
Models in Few-Shot Learning [21.693779973263172]
In this paper, we introduce a fine-tuning approach termed Feature Discrimination Alignment (FD-Align)
Our method aims to bolster the model's generalizability by preserving the consistency of spurious features.
Once fine-tuned, the model can seamlessly integrate with existing methods, leading to performance improvements.
arXiv Detail & Related papers (2023-10-23T17:12:01Z) - Universal Domain Adaptation from Foundation Models: A Baseline Study [58.51162198585434]
We make empirical studies of state-of-the-art UniDA methods using foundation models.
We introduce textitCLIP distillation, a parameter-free method specifically designed to distill target knowledge from CLIP models.
Although simple, our method outperforms previous approaches in most benchmark tasks.
arXiv Detail & Related papers (2023-05-18T16:28:29Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Class-Incremental Learning with Strong Pre-trained Models [97.84755144148535]
Class-incremental learning (CIL) has been widely studied under the setting of starting from a small number of classes (base classes)
We explore an understudied real-world setting of CIL that starts with a strong model pre-trained on a large number of base classes.
Our proposed method is robust and generalizes to all analyzed CIL settings.
arXiv Detail & Related papers (2022-04-07T17:58:07Z) - Boosting the Generalization Capability in Cross-Domain Few-shot Learning
via Noise-enhanced Supervised Autoencoder [23.860842627883187]
We teach the model to capture broader variations of the feature distributions with a novel noise-enhanced supervised autoencoder (NSAE)
NSAE trains the model by jointly reconstructing inputs and predicting the labels of inputs as well as their reconstructed pairs.
We also take advantage of NSAE structure and propose a two-step fine-tuning procedure that achieves better adaption and improves classification performance in the target domain.
arXiv Detail & Related papers (2021-08-11T04:45:56Z) - Explanation-Guided Training for Cross-Domain Few-Shot Classification [96.12873073444091]
Cross-domain few-shot classification task (CD-FSC) combines few-shot classification with the requirement to generalize across domains represented by datasets.
We introduce a novel training approach for existing FSC models.
We show that explanation-guided training effectively improves the model generalization.
arXiv Detail & Related papers (2020-07-17T07:28:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.