Enhancing Privacy and Security of Autonomous UAV Navigation
- URL: http://arxiv.org/abs/2404.17225v1
- Date: Fri, 26 Apr 2024 07:54:04 GMT
- Title: Enhancing Privacy and Security of Autonomous UAV Navigation
- Authors: Vatsal Aggarwal, Arjun Ramesh Kaushik, Charanjit Jutla, Nalini Ratha,
- Abstract summary: In critical scenarios such as border protection or disaster response, ensuring the secure navigation of autonomous UAVs is paramount.
We propose an innovative approach that combines Reinforcement Learning (RL) and Fully Homomorphic Encryption (FHE) for secure autonomous UAV navigation.
Our proposed approach ensures security and privacy in autonomous UAV navigation with negligible loss in performance.
- Score: 0.8512184778338805
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous Unmanned Aerial Vehicles (UAVs) have become essential tools in defense, law enforcement, disaster response, and product delivery. These autonomous navigation systems require a wireless communication network, and of late are deep learning based. In critical scenarios such as border protection or disaster response, ensuring the secure navigation of autonomous UAVs is paramount. But, these autonomous UAVs are susceptible to adversarial attacks through the communication network or the deep learning models - eavesdropping / man-in-the-middle / membership inference / reconstruction. To address this susceptibility, we propose an innovative approach that combines Reinforcement Learning (RL) and Fully Homomorphic Encryption (FHE) for secure autonomous UAV navigation. This end-to-end secure framework is designed for real-time video feeds captured by UAV cameras and utilizes FHE to perform inference on encrypted input images. While FHE allows computations on encrypted data, certain computational operators are yet to be implemented. Convolutional neural networks, fully connected neural networks, activation functions and OpenAI Gym Library are meticulously adapted to the FHE domain to enable encrypted data processing. We demonstrate the efficacy of our proposed approach through extensive experimentation. Our proposed approach ensures security and privacy in autonomous UAV navigation with negligible loss in performance.
Related papers
- Towards Building Secure UAV Navigation with FHE-aware Knowledge Distillation [0.0]
This paper proposes an innovative approach that leverages Knowledge Distillation to enhance the practicality of secure UAV navigation.
By integrating RL and FHE, our framework addresses vulnerabilities to adversarial attacks while enabling real-time processing of encrypted UAV camera feeds.
To mitigate FHE's latency, Knowledge Distillation is employed to compress the network, resulting in an impressive 18x speedup without compromising performance.
arXiv Detail & Related papers (2024-11-01T07:04:24Z) - Machine Learning-Based Malicious Vehicle Detection for Security Threats
and Attacks in Vehicle Ad-hoc Network (VANET) Communications [0.48951183832371004]
Blackhole attacks are significant threats to Vehicle Ad-hoc Network (VANET)
In this paper, we propose a machine learning-based approach for blackhole detection in VANET.
arXiv Detail & Related papers (2024-01-16T06:01:02Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection [0.0]
This paper presents a transfer-based drone detection scheme, which forms an integral part of a computer vision-based module.
By harnessing the knowledge of pre-trained models from a related domain, transfer learning enables improved results even with limited training data.
Notably, the scheme's effectiveness is highlighted by its IOU-based validation results.
arXiv Detail & Related papers (2023-06-11T22:30:23Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
In this work, we exemplify the potential threat of malicious actors using deep reinforcement learning to train automated agents.
We present an agent that uses a state-of-the-art reinforcement learning algorithm to perform local privilege escalation.
Our agent is usable for generating realistic attack sensor data for training and evaluating intrusion detection systems.
arXiv Detail & Related papers (2021-10-04T12:20:46Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
We study new adversarial perturbations that enable an attacker to gain control over decisions in generic Artificial Intelligence systems.
In contrast to adversarial data modification, the attack mechanism we consider here involves alterations to the AI system itself.
arXiv Detail & Related papers (2021-06-26T10:50:07Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - Open-set Adversarial Defense [93.25058425356694]
We show that open-set recognition systems are vulnerable to adversarial attacks.
Motivated by this observation, we emphasize the need of an Open-Set Adrial Defense (OSAD) mechanism.
This paper proposes an Open-Set Defense Network (OSDN) as a solution to the OSAD problem.
arXiv Detail & Related papers (2020-09-02T04:35:33Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
How to achieve ubiquitous 3D communication coverage for UAVs in the sky is a new challenge.
We propose a new coverage-aware navigation approach, which exploits the UAV's controllable mobility to design its navigation/trajectory.
We propose a new framework called simultaneous navigation and radio mapping (SNARM), where the UAV's signal measurement is used to train the deep Q network.
arXiv Detail & Related papers (2020-03-17T08:16:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.