VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection
- URL: http://arxiv.org/abs/2306.06797v1
- Date: Sun, 11 Jun 2023 22:30:23 GMT
- Title: VBSF-TLD: Validation-Based Approach for Soft Computing-Inspired Transfer
Learning in Drone Detection
- Authors: Jaskaran Singh
- Abstract summary: This paper presents a transfer-based drone detection scheme, which forms an integral part of a computer vision-based module.
By harnessing the knowledge of pre-trained models from a related domain, transfer learning enables improved results even with limited training data.
Notably, the scheme's effectiveness is highlighted by its IOU-based validation results.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing utilization of Internet of Things (IoT) enabled drones in
diverse applications like photography, delivery, and surveillance, concerns
regarding privacy and security have become more prominent. Drones have the
ability to capture sensitive information, compromise privacy, and pose security
risks. As a result, the demand for advanced technology to automate drone
detection has become crucial. This paper presents a project on a transfer-based
drone detection scheme, which forms an integral part of a computer vision-based
module and leverages transfer learning to enhance performance. By harnessing
the knowledge of pre-trained models from a related domain, transfer learning
enables improved results even with limited training data. To evaluate the
scheme's performance, we conducted tests on benchmark datasets, including the
Drone-vs-Bird Dataset and the UAVDT dataset. Notably, the scheme's
effectiveness is highlighted by its IOU-based validation results, demonstrating
the potential of deep learning-based technology in automating drone detection
in critical areas such as airports, military bases, and other high-security
zones.
Related papers
- Drone Detection and Tracking with YOLO and a Rule-based Method [0.0]
An increased volume of drone activity in public spaces requires regulatory actions for purposes of privacy protection and safety.
detection tasks are usually automated and performed by deep learning models which are trained on annotated image datasets.
This paper builds on a previous work and extends an already published open source dataset.
Since the detection models are based on a single image input, a simple cross-correlation based tracker is used to reduce detection drops and improve tracking performance in videos.
arXiv Detail & Related papers (2025-02-07T19:53:10Z) - DRL-based Dolph-Tschebyscheff Beamforming in Downlink Transmission for Mobile Users [52.9870460238443]
We propose a deep reinforcement learning-based blind beamforming technique using a learnable Dolph-Tschebyscheff antenna array.
Our simulation results show that the proposed method can support data rates very close to the best possible values.
arXiv Detail & Related papers (2025-02-03T11:50:43Z) - Cooperative Search and Track of Rogue Drones using Multiagent Reinforcement Learning [8.775925011558995]
This work considers the problem of intercepting rogue drones targeting sensitive critical infrastructure facilities.
A holistic system that can reliably detect, track, and neutralize rogue drones is proposed.
arXiv Detail & Related papers (2025-01-07T16:22:51Z) - Multi-Source Urban Traffic Flow Forecasting with Drone and Loop Detector Data [61.9426776237409]
Drone-captured data can create an accurate multi-sensor mobility observatory for large-scale urban networks.
A simple yet effective graph-based model HiMSNet is proposed to integrate multiple data modalities and learn-temporal correlations.
arXiv Detail & Related papers (2025-01-07T03:23:28Z) - A Cross-Scene Benchmark for Open-World Drone Active Tracking [54.235808061746525]
Drone Visual Active Tracking aims to autonomously follow a target object by controlling the motion system based on visual observations.
We propose a unified cross-scene cross-domain benchmark for open-world drone active tracking called DAT.
We also propose a reinforcement learning-based drone tracking method called R-VAT.
arXiv Detail & Related papers (2024-12-01T09:37:46Z) - FedBA: Non-IID Federated Learning Framework in UAV Networks [10.503796485713305]
This paper proposes a new algorithm FedBA to optimize the global model and solves the data heterogeneity problem.
Experiments show that the algorithm outperforms other algorithms and improves the accuracy of the local model for UAVs.
arXiv Detail & Related papers (2022-10-10T13:55:55Z) - Fail-Safe Human Detection for Drones Using a Multi-Modal Curriculum
Learning Approach [1.094245191265935]
We present KUL-UAVSAFE, a first-of-its-kind dataset for the study of safety-critical people detection by drones.
We propose a CNN architecture with cross-fusion highways and introduce a curriculum learning strategy for multi-modal data.
arXiv Detail & Related papers (2021-09-28T12:34:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
Unmanned aerial vehicles (UAVs) are now beginning to be deployed for enhancing the network performance and coverage in wireless communication.
It is challenging to obtain an optimal resource allocation scheme for the UAV-assisted Internet of Things (IoT)
In this paper, we design a new UAV-assisted IoT systems relying on the shortest flight path of the UAVs while maximising the amount of data collected from IoT devices.
arXiv Detail & Related papers (2021-06-06T14:08:41Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
Unmanned aerial vehicles (UAVs) are considered as one of the promising technologies for the next-generation wireless communication networks.
Artificial intelligence (AI) is growing rapidly nowadays and has been very successful.
We provide a comprehensive overview of some potential applications of AI in UAV-based networks.
arXiv Detail & Related papers (2020-09-24T07:11:31Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
We propose a new end-to-end reinforcement learning approach to UAV-enabled data collection from Internet of Things (IoT) devices.
An autonomous drone is tasked with gathering data from distributed sensor nodes subject to limited flying time and obstacle avoidance.
We show that our proposed network architecture enables the agent to make movement decisions for a variety of scenario parameters.
arXiv Detail & Related papers (2020-07-01T15:14:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.