論文の概要: Weakly Supervised Training for Hologram Verification in Identity Documents
- arxiv url: http://arxiv.org/abs/2404.17253v1
- Date: Fri, 26 Apr 2024 08:47:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:34:31.382798
- Title: Weakly Supervised Training for Hologram Verification in Identity Documents
- Title(参考訳): 個人文書におけるホログラム検証のための弱監督訓練
- Authors: Glen Pouliquen, Guillaume Chiron, Joseph Chazalon, Thierry Géraud, Ahmad Montaser Awal,
- Abstract要約: 識別文書における光学可変デバイス(OVD)の正当性を検証する手法を提案する。
本手法は、一般的な照明条件下でスマートフォンで撮影したビデオクリップを処理する。
弱い教師付きトレーニングのおかげで、私たちは特徴抽出と意思決定パイプラインを最適化し、新しいリードパフォーマンスを実現しました。
- 参考スコア(独自算出の注目度): 1.9197225657187418
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We propose a method to remotely verify the authenticity of Optically Variable Devices (OVDs), often referred to as ``holograms'', in identity documents. Our method processes video clips captured with smartphones under common lighting conditions, and is evaluated on two public datasets: MIDV-HOLO and MIDV-2020. Thanks to a weakly-supervised training, we optimize a feature extraction and decision pipeline which achieves a new leading performance on MIDV-HOLO, while maintaining a high recall on documents from MIDV-2020 used as attack samples. It is also the first method, to date, to effectively address the photo replacement attack task, and can be trained on either genuine samples, attack samples, or both for increased performance. By enabling to verify OVD shapes and dynamics with very little supervision, this work opens the way towards the use of massive amounts of unlabeled data to build robust remote identity document verification systems on commodity smartphones. Code is available at https://github.com/EPITAResearchLab/pouliquen.24.icdar
- Abstract(参考訳): 本稿では,光学可変デバイス(OVD)の信頼性を遠隔で検証する手法を提案する。
MIDV-HOLO と MIDV-2020 の2つの公開データセットで評価を行った。
MIDV-HOLOでは,攻撃サンプルとして使用されるMIDV-2020の文書を高いリコールを維持しつつ,特徴抽出と決定パイプラインを最適化した。
また、写真置換攻撃タスクに効果的に対処する最初の方法であり、真のサンプル、攻撃サンプル、あるいはパフォーマンス向上のためにトレーニングすることができる。
OVDの形状やダイナミクスをほとんど監視することなく検証可能にすることで、この研究は、膨大な量のラベルのないデータを使用して、コモディティスマートフォン上で堅牢なリモートID文書検証システムを構築するための道を開く。
コードはhttps://github.com/EPITAResearchLab/pouliquen.24.icdarで公開されている。
関連論文リスト
- Neuromorphic Synergy for Video Binarization [54.195375576583864]
バイモーダルオブジェクトは視覚システムによって容易に認識できる情報を埋め込む視覚形式として機能する。
ニューロモルフィックカメラは、動きのぼかしを緩和する新しい機能を提供するが、最初にブルーを脱色し、画像をリアルタイムでバイナライズするのは簡単ではない。
本稿では,イベント空間と画像空間の両方で独立に推論を行うために,バイモーダル目標特性の事前知識を活用するイベントベースバイナリ再構築手法を提案する。
また、このバイナリ画像を高フレームレートバイナリビデオに伝搬する効率的な統合手法も開発している。
論文 参考訳(メタデータ) (2024-02-20T01:43:51Z) - Unified High-binding Watermark for Unconditional Image Generation Models [7.4037644261198885]
攻撃者はターゲットモデルの出力画像を盗み、トレーニングデータの一部として使用して、プライベート代理UIGモデルをトレーニングすることができる。
高結合効果を有する2段階統一透かし検証機構を提案する。
実験では、ほぼゼロの偽陽性率で検証作業を完了できることを示した。
論文 参考訳(メタデータ) (2023-10-14T03:26:21Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - NPVForensics: Jointing Non-critical Phonemes and Visemes for Deepfake
Detection [50.33525966541906]
既存のマルチモーダル検出手法は、Deepfakeビデオを公開するために、音声と視覚の不整合をキャプチャする。
NPVForensics と呼ばれる非臨界音素とビセムの相関関係を抽出する新しいディープフェイク検出法を提案する。
我々のモデルは、微調整で下流のDeepfakeデータセットに容易に適応できる。
論文 参考訳(メタデータ) (2023-06-12T06:06:05Z) - Unmasking Deepfakes: Masked Autoencoding Spatiotemporal Transformers for
Enhanced Video Forgery Detection [19.432851794777754]
本稿では,自己教師型マスク自動符号化装置によって事前訓練された視覚変換器を用いたディープフェイク映像の検出手法を提案する。
提案手法は,ビデオの個々のRGBフレームから空間情報を学習することに焦点を当てた2つのコンポーネントで構成され,一方は連続するフレームから生成された光フロー場から時間的整合性情報を学習する。
論文 参考訳(メタデータ) (2023-06-12T05:49:23Z) - Weakly Supervised Two-Stage Training Scheme for Deep Video Fight
Detection Model [0.0]
ビデオにおけるファイト検出は、今日の監視システムとストリーミングメディアの普及にともなう、新たなディープラーニングアプリケーションである。
これまでの研究は、この問題に対処するための行動認識技術に大きく依存していた。
本研究では,動作認識特徴抽出器と異常スコア生成器の合成として,戦闘検出モデルを設計する。
論文 参考訳(メタデータ) (2022-09-23T08:29:16Z) - MDMMT-2: Multidomain Multimodal Transformer for Video Retrieval, One
More Step Towards Generalization [65.09758931804478]
3つの異なるデータソースが組み合わさっている: 弱教師付きビデオ、クラウドラベル付きテキストイメージペア、テキストビデオペア。
利用可能な事前学習ネットワークの慎重な分析は、最高の事前学習ネットワークを選択するのに役立つ。
論文 参考訳(メタデータ) (2022-03-14T13:15:09Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - EHSOD: CAM-Guided End-to-end Hybrid-Supervised Object Detection with
Cascade Refinement [53.69674636044927]
本稿では,エンド・ツー・エンドのハイブリッド型オブジェクト検出システムであるEHSODについて述べる。
完全なアノテートと弱いアノテートの両方で、ワンショットでトレーニングすることができる。
完全なアノテートされたデータの30%しか持たない複数のオブジェクト検出ベンチマークで、同等の結果が得られる。
論文 参考訳(メタデータ) (2020-02-18T08:04:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。