論文の概要: Adversarial Reweighting with $α$-Power Maximization for Domain Adaptation
- arxiv url: http://arxiv.org/abs/2404.17275v1
- Date: Fri, 26 Apr 2024 09:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:34:31.367615
- Title: Adversarial Reweighting with $α$-Power Maximization for Domain Adaptation
- Title(参考訳): ドメイン適応のための$α$-Power Maximizationによる逆方向再重み付け
- Authors: Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu,
- Abstract要約: 我々は、$alpha$-Power Maximization (ARPM) を用いたAdversarial Reweightingと呼ばれる新しいアプローチを提案する。
本稿では,ソースプライマリなクラスサンプルを特定するために,逆向きにソースドメインデータを再重み付けすることを学習する,新しい逆方向再重み付けモデルを提案する。
提案手法は最近のPDA法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 56.859005008344276
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical Domain Adaptation (DA) tasks, e.g., Partial DA (PDA), open-set DA, universal DA, and test-time adaptation, have gained increasing attention in the machine learning community. In this paper, we propose a novel approach, dubbed Adversarial Reweighting with $\alpha$-Power Maximization (ARPM), for PDA where the source domain contains private classes absent in target domain. In ARPM, we propose a novel adversarial reweighting model that adversarially learns to reweight source domain data to identify source-private class samples by assigning smaller weights to them, for mitigating potential negative transfer. Based on the adversarial reweighting, we train the transferable recognition model on the reweighted source distribution to be able to classify common class data. To reduce the prediction uncertainty of the recognition model on the target domain for PDA, we present an $\alpha$-power maximization mechanism in ARPM, which enriches the family of losses for reducing the prediction uncertainty for PDA. Extensive experimental results on five PDA benchmarks, i.e., Office-31, Office-Home, VisDA-2017, ImageNet-Caltech, and DomainNet, show that our method is superior to recent PDA methods. Ablation studies also confirm the effectiveness of components in our approach. To theoretically analyze our method, we deduce an upper bound of target domain expected error for PDA, which is approximately minimized in our approach. We further extend ARPM to open-set DA, universal DA, and test time adaptation, and verify the usefulness through experiments.
- Abstract(参考訳): 実用的なドメイン適応(DA)タスク、例えば、部分DA(PDA)、オープンセットDA、ユニバーサルDA、テストタイム適応は、機械学習コミュニティで注目を集めている。
本稿では、ソースドメインがターゲットドメインにないプライベートクラスを含むPDAに対して、$\alpha$-Power Maximization (ARPM) を用いたAdversarial Reweighting(Adversarial Reweighting)と呼ばれる新しいアプローチを提案する。
そこで,ARPM では,より小さな重みを割り当ててソース・プライベートなクラス・サンプルを識別するために,逆向きにソース・ドメイン・データを再重み付けすることを学習する新たな逆方向再重み付けモデルを提案する。
逆方向の再重み付けに基づいて、共用クラスデータの分類を可能にするために、再重み付きソース分布上の転送可能な認識モデルを訓練する。
PDAの認識モデルの予測不確かさを低減するため、PDAの予測不確かさを軽減するために損失のファミリーを充実させるARPMに$\alpha$-power maximizationメカニズムを提案する。
Office-31、Office-Home、VisDA-2017、ImageNet-Caltech、DomainNetの5つのPDAベンチマークによる大規模な実験結果から、我々の手法は最近のPDA法よりも優れていることが示された。
アブレーション研究は、我々のアプローチにおけるコンポーネントの有効性も確認する。
提案手法を理論的に解析するために,提案手法ではほぼ最小となる PDA の目標領域予測誤差の上限を導出する。
さらに,ARPMをオープンセットDA,ユニバーサルDA,テスト時間適応に拡張し,実験による有用性を検証する。
関連論文リスト
- Unsupervised Domain Adaptation Using Compact Internal Representations [23.871860648919593]
教師なしドメイン適応に対処する技術では、ソースとターゲットドメインの両方からデータポイントを共有埋め込み空間にマッピングする。
我々は、ソース領域の内部分布をよりコンパクトにする追加の手法を開発する。
組込み空間における異なるクラスのデータ表現間のマージンを増大させることで、UDAのモデル性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2024-01-14T05:53:33Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
非教師なしドメイン適応(UDA)は、ソースドメインからラベルのないデータを持つターゲットドメインへの知識の転送に非常に効果的であることが証明されている。
オープンセットドメイン適応(ODA)は、トレーニングフェーズ中にこれらのクラスを識別する潜在的なソリューションとして登場した。
論文 参考訳(メタデータ) (2023-07-30T11:38:46Z) - Distributionally Robust Domain Adaptation [12.02023514105999]
ドメイン適応(DA: Domain Adaptation)は、ソースドメインとターゲットドメインをまたいだ学習モデルに適合する可能性から、最近大きな注目を集めている。
本稿では,分散ロバストな領域適応手法DRDAを提案する。
論文 参考訳(メタデータ) (2022-10-30T17:29:22Z) - Domain Adaptation with Adversarial Training on Penultimate Activations [82.9977759320565]
教師なし領域適応(Unsupervised Domain Adaptation, UDA)の重要な目的は、ラベルなし対象データに対するモデル予測の信頼性を高めることである。
我々は,この戦略が,入力画像や中間特徴に対する敵対的訓練よりも予測信頼性を高める目的と,より効率的で相関性が高いことを示す。
論文 参考訳(メタデータ) (2022-08-26T19:50:46Z) - Domain-Specific Risk Minimization for Out-of-Distribution Generalization [104.17683265084757]
まず、適応性ギャップを明示的に考慮した一般化境界を確立する。
本稿では,目標に対するより良い仮説の選択を導くための効果的なギャップ推定法を提案する。
もう1つの方法は、オンラインターゲットサンプルを用いてモデルパラメータを適応させることにより、ギャップを最小化することである。
論文 参考訳(メタデータ) (2022-08-18T06:42:49Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Boosting Unsupervised Domain Adaptation with Soft Pseudo-label and
Curriculum Learning [19.903568227077763]
教師なしドメイン適応(UDA)は、完全にラベル付けされたソースドメインからのデータを活用することにより、ラベル付けされていないターゲットドメインの分類性能を向上させる。
ソフトな擬似ラベル戦略を用いてモデル予測の欠陥を大幅に低減するモデルに依存しない2段階学習フレームワークを提案する。
第2段階では,2つのドメインの損失間の重み付けを適応的に制御するカリキュラム学習戦略を提案する。
論文 参考訳(メタデータ) (2021-12-03T14:47:32Z) - Regressive Domain Adaptation for Unsupervised Keypoint Detection [67.2950306888855]
ドメイン適応(DA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的とする。
本稿では,教師なしキーポイント検出のためのレグレッシブドメイン適応(RegDA)法を提案する。
提案手法は,異なるデータセット上のPCKにおいて,8%から11%の大幅な改善をもたらす。
論文 参考訳(メタデータ) (2021-03-10T16:45:22Z) - Metric-Learning-Assisted Domain Adaptation [18.62119154143642]
多くの既存ドメインアライメント手法は、ソースとターゲットの分布のアライメントとともに、低いソースリスクが低いターゲットリスクを意味すると仮定している。
本稿では,特徴整合性向上を支援するために,新しい三重項損失を用いたメタラーニング支援ドメイン適応法(MLA-DA)を提案する。
論文 参考訳(メタデータ) (2020-04-23T04:20:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。