論文の概要: Masked Two-channel Decoupling Framework for Incomplete Multi-view Weak Multi-label Learning
- arxiv url: http://arxiv.org/abs/2404.17340v1
- Date: Fri, 26 Apr 2024 11:39:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:24:47.086960
- Title: Masked Two-channel Decoupling Framework for Incomplete Multi-view Weak Multi-label Learning
- Title(参考訳): 不完全なマルチビュー弱マルチラベル学習のためのマスク付き2チャンネルデカップリングフレームワーク
- Authors: Chengliang Liu, Jie Wen, Yabo Liu, Chao Huang, Zhihao Wu, Xiaoling Luo, Yong Xu,
- Abstract要約: 本稿では,不完全な多視点弱多言語学習における複雑かつ現実的な課題に焦点をあてる。
本稿では,この問題を解決するために,ディープニューラルネットワークに基づくマスク付き2チャネルデカップリングフレームワークを提案する。
我々のモデルは任意のビューやラベルの欠如に完全に適応でき、また理想的な全データでもうまく機能する。
- 参考スコア(独自算出の注目度): 21.49630640829186
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view learning has become a popular research topic in recent years, but research on the cross-application of classic multi-label classification and multi-view learning is still in its early stages. In this paper, we focus on the complex yet highly realistic task of incomplete multi-view weak multi-label learning and propose a masked two-channel decoupling framework based on deep neural networks to solve this problem. The core innovation of our method lies in decoupling the single-channel view-level representation, which is common in deep multi-view learning methods, into a shared representation and a view-proprietary representation. We also design a cross-channel contrastive loss to enhance the semantic property of the two channels. Additionally, we exploit supervised information to design a label-guided graph regularization loss, helping the extracted embedding features preserve the geometric structure among samples. Inspired by the success of masking mechanisms in image and text analysis, we develop a random fragment masking strategy for vector features to improve the learning ability of encoders. Finally, it is important to emphasize that our model is fully adaptable to arbitrary view and label absences while also performing well on the ideal full data. We have conducted sufficient and convincing experiments to confirm the effectiveness and advancement of our model.
- Abstract(参考訳): 近年,マルチビュー学習が注目されているが,従来のマルチラベル分類とマルチビュー学習の相互適用に関する研究はまだ初期段階にある。
本稿では,不完全な多視点弱多言語学習における複雑かつ現実的な課題に着目し,この問題を解決するために,ディープニューラルネットワークに基づくマスク付き2チャンネル疎結合フレームワークを提案する。
本手法の中核となる革新は、深層多視点学習法に共通する単一チャンネルビューレベルの表現を、共有表現とビュープロプライエタリ表現に分離することにある。
また,二つのチャネルの意味的特性を高めるために,チャネル間のコントラスト損失を設計する。
さらに、教師付き情報を利用してラベル誘導グラフ正規化損失を設計し、抽出した埋め込み特徴がサンプル間の幾何学的構造を保存するのに役立つ。
画像およびテキスト解析におけるマスキング機構の成功に触発されて,ベクトル特徴に対するランダムなフラグメントマスキング戦略を開発し,エンコーダの学習能力を向上させる。
最後に、我々のモデルは任意のビューやラベルの欠如に対して完全に適応可能であると同時に、理想的な全データでも良好に動作可能であることを強調することが重要である。
我々は,本モデルの有効性と進歩を確認するのに十分かつ説得力のある実験を行った。
関連論文リスト
- Towards Generalized Multi-stage Clustering: Multi-view Self-distillation [10.368796552760571]
既存のマルチステージクラスタリング手法は、独立して複数のビューから健全な特徴を学習し、クラスタリングタスクを実行する。
本稿では,多視点自己蒸留(DistilMVC)を導入し,ラベル分布の暗黒知識を抽出する多段階深層MVCフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-29T03:35:34Z) - Multi-View Class Incremental Learning [57.14644913531313]
マルチビュー学習(MVL)は、下流タスクのパフォーマンスを改善するためにデータセットの複数の視点から情報を統合することで大きな成功を収めている。
本稿では,複数視点クラスインクリメンタルラーニング(MVCIL)と呼ばれる新しいパラダイムについて考察する。
論文 参考訳(メタデータ) (2023-06-16T08:13:41Z) - Reliable Representations Learning for Incomplete Multi-View Partial Multi-Label Classification [78.15629210659516]
本稿ではRANKという不完全なマルチビュー部分的マルチラベル分類ネットワークを提案する。
既存の手法に固有のビューレベルの重みを分解し、各サンプルのビューに品質スコアを動的に割り当てる品質対応サブネットワークを提案する。
我々のモデルは、完全なマルチビューマルチラベルデータセットを処理できるだけでなく、欠落したインスタンスやラベルを持つデータセットでも機能する。
論文 参考訳(メタデータ) (2023-03-30T03:09:25Z) - DICNet: Deep Instance-Level Contrastive Network for Double Incomplete
Multi-View Multi-Label Classification [20.892833511657166]
実世界におけるマルチビューマルチラベルデータは、データ収集や手動アノテーションの不確実性のため、一般的に不完全である。
本稿では,DICNetという深層インスタンスレベルのコントラストネットワークを提案し,二重不完全なマルチラベル分類問題に対処する。
我々のDICNetは、マルチビュー多ラベルデータの一貫した識別的表現を捉え、欠落したビューと欠落したラベルの負の影響を避けることに長けている。
論文 参考訳(メタデータ) (2023-03-15T04:24:01Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
マルチビュー表現学習は、過去数十年間で急速に発展し、多くの分野に応用されてきた。
本稿では,多視点情報を統合してデータアライメントを行い,潜在表現を学習する,新しいクロスビューグラフコントラスト学習フレームワークを提案する。
複数の実データを用いて実験を行い,クラスタリングおよび分類作業における提案手法の有効性を示した。
論文 参考訳(メタデータ) (2022-11-08T09:19:32Z) - MORI-RAN: Multi-view Robust Representation Learning via Hybrid
Contrastive Fusion [4.36488705757229]
多視点表現学習は、クラスタリングや分類といった多くの多視点タスクに不可欠である。
ラベルのないデータから堅牢なビュー-共通表現を抽出するハイブリッドコントラスト融合アルゴリズムを提案する。
実験の結果,提案手法は実世界の4つのデータセットにおいて,12の競合的マルチビュー手法よりも優れていた。
論文 参考訳(メタデータ) (2022-08-26T09:58:37Z) - Deep Contrastive Learning for Multi-View Network Embedding [20.035449838566503]
マルチビューネットワーク埋め込みは、ネットワーク内のノードを低次元ベクトルに投影することを目的としている。
ほとんどの対照的な学習ベースの手法は、主に高品質なグラフ埋め込みに依存している。
マルチビューネットワーク埋め込み(CREME)のための新しいノード間コントラスト学習フレームワークを設計する。
論文 参考訳(メタデータ) (2021-08-16T06:29:18Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Deep Partial Multi-View Learning [94.39367390062831]
クロスパーシャル・マルチビュー・ネットワーク(CPM-Nets)と呼ばれる新しいフレームワークを提案する。
我々はまず、多視点表現に対する完全性と汎用性の形式的な定義を提供する。
そして、理論的に学習された潜在表現の多元性を証明する。
論文 参考訳(メタデータ) (2020-11-12T02:29:29Z) - Embedded Deep Bilinear Interactive Information and Selective Fusion for
Multi-view Learning [70.67092105994598]
本稿では,上記の2つの側面に着目した,新しい多視点学習フレームワークを提案する。
特に、さまざまな深層ニューラルネットワークをトレーニングして、様々なビュー内表現を学習する。
6つの公開データセットの実験により,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-07-13T01:13:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。