論文の概要: On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance System
- arxiv url: http://arxiv.org/abs/2404.17350v1
- Date: Fri, 26 Apr 2024 11:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 13:15:01.506234
- Title: On the Road to Clarity: Exploring Explainable AI for World Models in a Driver Assistance System
- Title(参考訳): 明確化への道 - ドライバ支援システムにおける世界モデルのための説明可能なAIの探索
- Authors: Mohamed Roshdi, Julian Petzold, Mostafa Wahby, Hussein Ebrahim, Mladen Berekovic, Heiko Hamann,
- Abstract要約: 我々は畳み込み変分オートエンコーダ(VAE)のための透明なバックボーンモデルを構築した。
本稿では,予測ネットワークの内部力学と特徴関連性に関する説明と評価手法を提案する。
本稿では,都市交通状況における歩行者の認識を予測したVAE-LSTM世界モデルの解析により,提案手法を実証する。
- 参考スコア(独自算出の注目度): 3.13366804259509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Autonomous Driving (AD) transparency and safety are paramount, as mistakes are costly. However, neural networks used in AD systems are generally considered black boxes. As a countermeasure, we have methods of explainable AI (XAI), such as feature relevance estimation and dimensionality reduction. Coarse graining techniques can also help reduce dimensionality and find interpretable global patterns. A specific coarse graining method is Renormalization Groups from statistical physics. It has previously been applied to Restricted Boltzmann Machines (RBMs) to interpret unsupervised learning. We refine this technique by building a transparent backbone model for convolutional variational autoencoders (VAE) that allows mapping latent values to input features and has performance comparable to trained black box VAEs. Moreover, we propose a custom feature map visualization technique to analyze the internal convolutional layers in the VAE to explain internal causes of poor reconstruction that may lead to dangerous traffic scenarios in AD applications. In a second key contribution, we propose explanation and evaluation techniques for the internal dynamics and feature relevance of prediction networks. We test a long short-term memory (LSTM) network in the computer vision domain to evaluate the predictability and in future applications potentially safety of prediction models. We showcase our methods by analyzing a VAE-LSTM world model that predicts pedestrian perception in an urban traffic situation.
- Abstract(参考訳): 自律運転(AD)では、ミスはコストがかかるため、透明性と安全性が最重要である。
しかしながら、ADシステムで使用されるニューラルネットワークは一般にブラックボックスと見なされる。
対策として,特徴関連性推定や次元減少といった,説明可能なAI(XAI)の手法がある。
粗粒化技術は次元を減らし、解釈可能なグローバルパターンを見つけるのに役立つ。
特定の粗粒化法は統計物理学からの正規化群である。
Restricted Boltzmann Machines (RBMs) に適用され、教師なし学習を解釈している。
我々はこの技術を改良し、畳み込み変分オートエンコーダ(VAE)のための透明なバックボーンモデルを構築し、遅延値と入力特徴をマッピングし、トレーニングされたブラックボックスVAEに匹敵する性能を有する。
さらに,VAE内部の畳み込み層を解析して,ADアプリケーションにおける危険な交通シナリオにつながる可能性のある,再構成不良の原因を説明する,独自の特徴マップ可視化手法を提案する。
第2のキーコントリビューションでは、予測ネットワークの内部力学と特徴関連性に関する説明と評価手法を提案する。
我々は,コンピュータビジョン領域における長期記憶(LSTM)ネットワークをテストし,予測可能性の評価と将来的な予測モデルの安全性について検討する。
本稿では,都市交通状況における歩行者の認識を予測したVAE-LSTM世界モデルの解析により,提案手法を実証する。
関連論文リスト
- AI-Aided Kalman Filters [65.35350122917914]
カルマンフィルタ(KF)とその変種は、信号処理において最も著名なアルゴリズムの一つである。
最近の進歩は、古典的なカルマン型フィルタリングでディープニューラルネットワーク(DNN)を融合させる可能性を示している。
本稿では,KF型アルゴリズムにAIを組み込むための設計アプローチについて,チュートリアル形式で概説する。
論文 参考訳(メタデータ) (2024-10-16T06:47:53Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - Interpretable Prognostics with Concept Bottleneck Models [5.939858158928473]
概念ボトルネックモデル(Concept Bottleneck Models, CBM)は、概念的説明に基づいて本質的に解釈可能なニューラルネットワークアーキテクチャである。
CBMはドメインの専門家がテスト時にコンセプトアクティベーションに介入できるようにする。
ケーススタディでは,CBMの性能がブラックボックスモデルと同等か優れていることが示されている。
論文 参考訳(メタデータ) (2024-05-27T18:15:40Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Understanding the (Extra-)Ordinary: Validating Deep Model Decisions with Prototypical Concept-based Explanations [13.60538902487872]
本稿では, 実例的(地域的)かつクラス的(グローバル的)な意思決定戦略をプロトタイプを通じて伝達する, ポストホックなコンセプトベースXAIフレームワークを提案する。
我々は,3つのデータセットにまたがるアウト・オブ・ディストリビューション・サンプル,突発的なモデル行動,データ品質問題同定におけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-28T10:53:26Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
提案手法は,複数の視覚タスクにおけるネットワーク一般化能力を常に改善することを示す。
我々の手法は単純だが有効であり、トレーニング可能なパラメータや損失制約を伴わずにネットワークに容易に統合できる。
論文 参考訳(メタデータ) (2023-01-16T14:25:02Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
本稿では,新しい鍵予測器を応用した機械学習モデルを提案する。
予測,一般化,計算性能の観点から各種MLアルゴリズムの性能を定量的に評価することにより,光グラディエントブースティングマシン(LightGBM)アルゴリズムが全体として他のアルゴリズムより優れていることを示す。
論文 参考訳(メタデータ) (2022-01-30T19:50:16Z) - AcME -- Accelerated Model-agnostic Explanations: Fast Whitening of the
Machine-Learning Black Box [1.7534486934148554]
解釈可能性のアプローチは、ユーザが待つことなく、実行可能な洞察を提供するべきです。
本稿では,グローバルレベルとローカルレベルの両方で特徴的重要性のスコアを迅速に提供する解釈可能性アプローチである,アクセレーションモデル非依存説明(AcME)を提案する。
AcMEは機能ランキングを計算しますが、機能値の変化がモデル予測にどのように影響するかを評価するために、What-if分析ツールも提供しています。
論文 参考訳(メタデータ) (2021-12-23T15:18:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。