Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework
- URL: http://arxiv.org/abs/2404.17583v1
- Date: Fri, 5 Apr 2024 12:40:03 GMT
- Title: Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework
- Authors: M. A. Maia, I. B. C. M. Rocha, D. Kovačević, F. P. van der Meer,
- Abstract summary: A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated. The proposed model benefits from the physics-based knowledge contained in the constitutive models used in the full-order micromodel by embedding them in a neural network. Following previous developments, this paper extends the applicability of the physically recurrent neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into a set of deformation gradients serving as input to the embedded constitutive models. These constitutive models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the internal variables of the history-dependent constitutive models naturally provide physics-based memory for the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders of magnitude with respect to the runtime of the original micromodel are obtained.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites [0.0]
This work proposes a physics-informed deep learning (PIDL)-based model for investigating the viscoelastic-viscoplastic behavior of short fiber-reinforced nanoparticles-filled epoxies under various ambient conditions.
The PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.
arXiv Detail & Related papers (2024-03-27T07:22:32Z) - Recurrent neural networks and transfer learning for elasto-plasticity in
woven composites [0.0]
This article presents Recurrent Neural Network (RNN) models as a surrogate for computationally intensive meso-scale simulation of woven composites.
A mean-field model generates a comprehensive data set representing elasto-plastic behavior.
In simulations, arbitrary six-dimensional strain histories are used to predict stresses under random walking as the source task and cyclic loading conditions as the target task.
arXiv Detail & Related papers (2023-11-22T14:47:54Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - A micromechanics-based recurrent neural networks model for
path-dependent cyclic deformation of short fiber composites [0.0]
In this work, a recurrent deep neural network model is trained to predict the path-dependent elasto-plastic stress response of short fiber reinforced composites.
The model gives very accurate predictions in a computationally efficient manner when compared with independent micromechanical simulations.
arXiv Detail & Related papers (2022-09-27T12:14:15Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives.
This study proposes a machine-learned data robustness-driven modeling approach for path-dependent materials based on the measurable material.
arXiv Detail & Related papers (2022-05-01T23:25:08Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
It is shown that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
It is shown, that the proposed method is able to predict central moments of interest while being magnitudes faster to evaluate than traditional approaches.
arXiv Detail & Related papers (2021-10-26T07:02:14Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.