A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
- URL: http://arxiv.org/abs/2403.18310v1
- Date: Wed, 27 Mar 2024 07:22:32 GMT
- Title: A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites
- Authors: Betim Bahtiri, Behrouz Arash, Sven Scheffler, Maximilian Jux, Raimund Rolfes,
- Abstract summary: This work proposes a physics-informed deep learning (PIDL)-based model for investigating the viscoelastic-viscoplastic behavior of short fiber-reinforced nanoparticles-filled epoxies under various ambient conditions.
The PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work proposes a physics-informed deep learning (PIDL)-based constitutive model for investigating the viscoelastic-viscoplastic behavior of short fiber-reinforced nanoparticle-filled epoxies under various ambient conditions. The deep-learning model is trained to enforce thermodynamic principles, leading to a thermodynamically consistent constitutive model. To accomplish this, a long short-term memory network is combined with a feed-forward neural network to predict internal variables required for characterizing the internal dissipation of the nanocomposite materials. In addition, another feed-forward neural network is used to indicate the free-energy function, which enables defining the thermodynamic state of the entire system. The PIDL model is initially developed for the three-dimensional case by generating synthetic data from a classical constitutive model. The model is then trained by extracting the data directly from cyclic loading-unloading experimental tests. Numerical examples show that the PIDL model can accurately predict the mechanical behavior of epoxy-based nanocomposites for different volume fractions of fibers and nanoparticles under various hygrothermal conditions.
Related papers
- Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework [0.0]
A hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous material is investigated.
The proposed model benefits from the physics-based knowledge contained in the models used in the full-order micromodel by embedding them in a neural network.
arXiv Detail & Related papers (2024-04-05T12:40:03Z) - Physics-Informed Neural Networks with Hard Linear Equality Constraints [9.101849365688905]
This work proposes a novel physics-informed neural network, KKT-hPINN, which rigorously guarantees hard linear equality constraints.
Experiments on Aspen models of a stirred-tank reactor unit, an extractive distillation subsystem, and a chemical plant demonstrate that this model can further enhance the prediction accuracy.
arXiv Detail & Related papers (2024-02-11T17:40:26Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - A machine learning-based viscoelastic-viscoplastic model for epoxy
nanocomposites with moisture content [0.0]
We propose a deep learning (DL)-based model for investigating the cyclic viscoelastic-viscoplastic-damage behavior of nanoparticles with moisture content.
A long short-term memory network is trained using a combined framework of a sampling technique and a perturbation method.
The training framework, along with the training data generated by an experimentally validated viscoelastic-viscoplastic model, enables the DL model to accurately capture the rate-dependent stress-strain relationship.
arXiv Detail & Related papers (2023-05-14T08:33:11Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Data-driven anisotropic finite viscoelasticity using neural ordinary
differential equations [0.0]
We develop a fully data-driven model of anisotropic finite viscoelasticity using neural ordinary differential equations as building blocks.
We replace the Helmholtz free energy function and the dissipation potential with data-driven functions that satisfy physics-based constraints.
We train the model using stress-strain data from biological and synthetic materials including humain brain tissue, blood clots, natural rubber and human myocardium.
arXiv Detail & Related papers (2023-01-11T17:03:46Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Automatically Polyconvex Strain Energy Functions using Neural Ordinary
Differential Equations [0.0]
Deep neural networks are able to learn complex material without the constraints of form approximations.
N-ODE material model is able to capture synthetic data generated from closedform material models.
framework can be used to model a large class of materials.
arXiv Detail & Related papers (2021-10-03T13:11:43Z) - A Compact Gated-Synapse Model for Neuromorphic Circuits [77.50840163374757]
The model is developed in Verilog-A for easy integration into computer-aided design of neuromorphic circuits.
The behavioral theory of the model is described in detail along with a full list of the default parameter settings.
arXiv Detail & Related papers (2020-06-29T18:22:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.