論文の概要: Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response
- arxiv url: http://arxiv.org/abs/2404.17584v1
- Date: Fri, 5 Apr 2024 14:49:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-05 18:04:17.065681
- Title: Equivariant graph convolutional neural networks for the representation of homogenized anisotropic microstructural mechanical response
- Title(参考訳): 等変グラフ畳み込みニューラルネットワークによる均質化異方性ミクロ組織応答の表現
- Authors: Ravi Patel, Cosmin Safta, Reese E. Jones,
- Abstract要約: 異なるミクロ構造材料対称性を持つ複合材料は、工学的応用において一般的である。
異方性成分を持つ材料の効果的な均質化モデルを提供するニューラルネットワークアーキテクチャを提供する。
- 参考スコア(独自算出の注目度): 1.283555556182245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Composite materials with different microstructural material symmetries are common in engineering applications where grain structure, alloying and particle/fiber packing are optimized via controlled manufacturing. In fact these microstructural tunings can be done throughout a part to achieve functional gradation and optimization at a structural level. To predict the performance of particular microstructural configuration and thereby overall performance, constitutive models of materials with microstructure are needed. In this work we provide neural network architectures that provide effective homogenization models of materials with anisotropic components. These models satisfy equivariance and material symmetry principles inherently through a combination of equivariant and tensor basis operations. We demonstrate them on datasets of stochastic volume elements with different textures and phases where the material undergoes elastic and plastic deformation, and show that the these network architectures provide significant performance improvements.
- Abstract(参考訳): 粒状構造, 合金化, 粒子/繊維充填を制御製造により最適化する工学的応用において, 異なるミクロ構造材料対称性を持つ複合材料が一般的である。
実際、これらの微構造的チューニングは、機能的な階調と構造レベルでの最適化を達成するために、部分的に行うことができる。
特定の組織構成の性能を予測し、全体的な性能を予測するためには、ミクロ構造を持つ材料の構成モデルが必要である。
本研究では、異方性成分を持つ材料の効果的な均質化モデルを提供するニューラルネットワークアーキテクチャを提供する。
これらのモデルは、本質的に同変とテンソル基底演算の組み合わせによって、同変と物質対称性の原理を満たす。
材料が弾性変形および塑性変形する異なるテクスチャと相の確率的体積要素のデータセット上でそれらを実証し、これらのネットワーク構造が顕著な性能向上をもたらすことを示す。
関連論文リスト
- Efficient Symmetry-Aware Materials Generation via Hierarchical Generative Flow Networks [52.13486402193811]
新しい固体材料は、結晶構造の広大な空間を急速に探索し、安定した領域を探索する必要がある。
既存の手法では、大きな材料空間を探索し、望ましい特性と要求を持った多様なサンプルを生成するのに苦労している。
本研究では, 材料空間の対称性を効果的に活用し, 所望の特性を持つ結晶構造を生成するために, 階層的探索戦略を用いた新しい生成モデルを提案する。
論文 参考訳(メタデータ) (2024-11-06T23:53:34Z) - Consistent machine learning for topology optimization with microstructure-dependent neural network material models [0.0]
空間的に異なるミクロ構造対称性と異なる異なるマイクロ構造記述子を持つマルチスケール構造のためのフレームワークを提案する。
本研究は,密度に基づく設計最適化と整合性の統合の可能性を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T14:17:43Z) - FAENet: Frame Averaging Equivariant GNN for Materials Modeling [123.19473575281357]
データ変換による任意のモデルE(3)-同変や不変化を実現するために,フレームアラグリング(SFA)に依存したフレキシブルなフレームワークを導入する。
本手法の有効性を理論的および実験的に証明し, 材料モデリングにおける精度と計算スケーラビリティを実証する。
論文 参考訳(メタデータ) (2023-04-28T21:48:31Z) - A Neural Network Transformer Model for Composite Microstructure Homogenization [1.2277343096128712]
森田中法のような均質化法は、幅広い構成特性に対して急速な均質化をもたらす。
本稿では,様々なミクロ構造の知識を捉えたトランスフォーマーニューラルネットワークアーキテクチャについて述べる。
ネットワークは、履歴に依存し、非線形で、均質化されたストレス-ひずみ応答を予測する。
論文 参考訳(メタデータ) (2023-04-16T19:57:52Z) - Differentiable graph-structured models for inverse design of lattice
materials [0.0]
異なる環境条件に適応可能な物理化学的性質を有する建築材料は、材料科学の破壊的な新しい領域を具現化している。
正規および不規則な格子材料に対するグラフベース表現を用いた新しい計算手法を提案する。
論文 参考訳(メタデータ) (2023-04-11T18:00:21Z) - Linking Properties to Microstructure in Liquid Metal Embedded Elastomers
via Machine Learning [0.0]
液体金属(LM)はエラストマーマトリックスに埋め込まれ、独特の熱、誘電体、機械的特性を持つ軟質複合材料が得られる。
これらの材料の性質と構造を結びつけることにより、材料設計を合理的に行うことができる。
論文 参考訳(メタデータ) (2022-07-24T06:02:26Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
機械学習の分野では、対称性に対する認識が目覚ましいパフォーマンスのブレークスルーを引き起こしている。
物理学のコミュニティと、より広い機械学習のコミュニティの両方に、理解すべきことがたくさんある、と私たちは主張する。
論文 参考訳(メタデータ) (2022-03-11T18:27:04Z) - How to See Hidden Patterns in Metamaterials with Interpretable Machine
Learning [82.67551367327634]
我々は,材料単位セルのパターンを見つけるための,解釈可能な多分解能機械学習フレームワークを開発した。
具体的には、形状周波数特徴と単位セルテンプレートと呼ばれるメタマテリアルの2つの新しい解釈可能な表現を提案する。
論文 参考訳(メタデータ) (2021-11-10T21:19:02Z) - A deep learning driven pseudospectral PCE based FFT homogenization
algorithm for complex microstructures [68.8204255655161]
提案手法は,従来の手法よりも高速に評価できる一方で,興味の中心モーメントを予測できることを示す。
提案手法は,従来の手法よりも高速に評価できると同時に,興味の中心モーメントを予測できることを示す。
論文 参考訳(メタデータ) (2021-10-26T07:02:14Z) - Optimal radial basis for density-based atomic representations [58.720142291102135]
データセットの構造的多様性を最も効率的に表現するために選択される適応的で最適な数値ベースを構築する方法について議論します。
トレーニングデータセットごとに、この最適なベースはユニークで、プリミティブベースに関して追加のコストなしで計算することができる。
この構成が精度と計算効率のよい表現をもたらすことを実証する。
論文 参考訳(メタデータ) (2021-05-18T17:57:08Z) - Deep Generative Modeling for Mechanistic-based Learning and Design of
Metamaterial Systems [20.659457956055366]
深部生成モデルに基づく新しいデータ駆動メタマテリアル設計フレームワークを提案する。
本研究では,VAEの潜伏空間が,形状類似度を測定するための距離メートル法を提供することを示す。
機能的グレードとヘテロジニアスなメタマテリアルシステムの両方を設計することで、我々のフレームワークを実証する。
論文 参考訳(メタデータ) (2020-06-27T03:56:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。