Leveraging Intra-modal and Inter-modal Interaction for Multi-Modal Entity Alignment
- URL: http://arxiv.org/abs/2404.17590v1
- Date: Fri, 19 Apr 2024 08:43:11 GMT
- Title: Leveraging Intra-modal and Inter-modal Interaction for Multi-Modal Entity Alignment
- Authors: Zhiwei Hu, Víctor Gutiérrez-Basulto, Zhiliang Xiang, Ru Li, Jeff Z. Pan,
- Abstract summary: Multi-modal entity alignment (MMEA) aims to identify equivalent entity pairs across different multi-modal knowledge graphs (MMKGs)
In this paper, we propose a Multi-Grained Interaction framework for Multi-Modal Entity alignment.
- Score: 27.28214706269035
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Multi-modal entity alignment (MMEA) aims to identify equivalent entity pairs across different multi-modal knowledge graphs (MMKGs). Existing approaches focus on how to better encode and aggregate information from different modalities. However, it is not trivial to leverage multi-modal knowledge in entity alignment due to the modal heterogeneity. In this paper, we propose a Multi-Grained Interaction framework for Multi-Modal Entity Alignment (MIMEA), which effectively realizes multi-granular interaction within the same modality or between different modalities. MIMEA is composed of four modules: i) a Multi-modal Knowledge Embedding module, which extracts modality-specific representations with multiple individual encoders; ii) a Probability-guided Modal Fusion module, which employs a probability guided approach to integrate uni-modal representations into joint-modal embeddings, while considering the interaction between uni-modal representations; iii) an Optimal Transport Modal Alignment module, which introduces an optimal transport mechanism to encourage the interaction between uni-modal and joint-modal embeddings; iv) a Modal-adaptive Contrastive Learning module, which distinguishes the embeddings of equivalent entities from those of non-equivalent ones, for each modality. Extensive experiments conducted on two real-world datasets demonstrate the strong performance of MIMEA compared to the SoTA. Datasets and code have been submitted as supplementary materials.
Related papers
- Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models [7.134682404460003]
We introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities.
Our methodology has been validated on several well-performing uni-modal models.
arXiv Detail & Related papers (2024-09-09T10:40:50Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - MESED: A Multi-modal Entity Set Expansion Dataset with Fine-grained
Semantic Classes and Hard Negative Entities [25.059177235004952]
We propose Multi-modal Entity Set Expansion (MESE), where models integrate information from multiple modalities to represent entities.
A powerful multi-modal model MultiExpan is proposed which is pre-trained on four multimodal pre-training tasks.
The MESED dataset is the first multi-modal dataset for ESE with large-scale and elaborate manual calibration.
arXiv Detail & Related papers (2023-07-27T14:09:59Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Multimodal Learning Without Labeled Multimodal Data: Guarantees and Applications [90.6849884683226]
We study the challenge of interaction quantification in a semi-supervised setting with only labeled unimodal data.
Using a precise information-theoretic definition of interactions, our key contribution is the derivation of lower and upper bounds.
We show how these theoretical results can be used to estimate multimodal model performance, guide data collection, and select appropriate multimodal models for various tasks.
arXiv Detail & Related papers (2023-06-07T15:44:53Z) - IMF: Interactive Multimodal Fusion Model for Link Prediction [13.766345726697404]
We introduce a novel Interactive Multimodal Fusion (IMF) model to integrate knowledge from different modalities.
Our approach has been demonstrated to be effective through empirical evaluations on several real-world datasets.
arXiv Detail & Related papers (2023-03-20T01:20:02Z) - Multi-modal Contrastive Representation Learning for Entity Alignment [57.92705405276161]
Multi-modal entity alignment aims to identify equivalent entities between two different multi-modal knowledge graphs.
We propose MCLEA, a Multi-modal Contrastive Learning based Entity Alignment model.
In particular, MCLEA firstly learns multiple individual representations from multiple modalities, and then performs contrastive learning to jointly model intra-modal and inter-modal interactions.
arXiv Detail & Related papers (2022-09-02T08:59:57Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
We propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis.
Our model outperforms existing approaches on unaligned multimodal sequences and has strong performance on aligned multimodal sequences.
arXiv Detail & Related papers (2022-06-16T07:47:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.