Multi-level Matching Network for Multimodal Entity Linking
- URL: http://arxiv.org/abs/2412.10440v1
- Date: Wed, 11 Dec 2024 10:26:17 GMT
- Title: Multi-level Matching Network for Multimodal Entity Linking
- Authors: Zhiwei Hu, Víctor Gutiérrez-Basulto, Ru Li, Jeff Z. Pan,
- Abstract summary: Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base.
We propose a Multi-level Matching network for Multimodal Entity Linking (M3EL)
M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity; and (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching,
- Score: 28.069585532270985
- License:
- Abstract: Multimodal entity linking (MEL) aims to link ambiguous mentions within multimodal contexts to corresponding entities in a multimodal knowledge base. Most existing approaches to MEL are based on representation learning or vision-and-language pre-training mechanisms for exploring the complementary effect among multiple modalities. However, these methods suffer from two limitations. On the one hand, they overlook the possibility of considering negative samples from the same modality. On the other hand, they lack mechanisms to capture bidirectional cross-modal interaction. To address these issues, we propose a Multi-level Matching network for Multimodal Entity Linking (M3EL). Specifically, M3EL is composed of three different modules: (i) a Multimodal Feature Extraction module, which extracts modality-specific representations with a multimodal encoder and introduces an intra-modal contrastive learning sub-module to obtain better discriminative embeddings based on uni-modal differences; (ii) an Intra-modal Matching Network module, which contains two levels of matching granularity: Coarse-grained Global-to-Global and Fine-grained Global-to-Local, to achieve local and global level intra-modal interaction; (iii) a Cross-modal Matching Network module, which applies bidirectional strategies, Textual-to-Visual and Visual-to-Textual matching, to implement bidirectional cross-modal interaction. Extensive experiments conducted on WikiMEL, RichpediaMEL, and WikiDiverse datasets demonstrate the outstanding performance of M3EL when compared to the state-of-the-art baselines.
Related papers
- Part-Whole Relational Fusion Towards Multi-Modal Scene Understanding [51.96911650437978]
Multi-modal fusion has played a vital role in multi-modal scene understanding.
Most existing methods focus on cross-modal fusion involving two modalities, often overlooking more complex multi-modal fusion.
We propose a relational Part-Whole Fusion (PWRF) framework for multi-modal scene understanding.
arXiv Detail & Related papers (2024-10-19T02:27:30Z) - Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities [8.517830626176641]
Any2Seg is a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions.
Experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting.
arXiv Detail & Related papers (2024-07-16T03:34:38Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - Leveraging Intra-modal and Inter-modal Interaction for Multi-Modal Entity Alignment [27.28214706269035]
Multi-modal entity alignment (MMEA) aims to identify equivalent entity pairs across different multi-modal knowledge graphs (MMKGs)
In this paper, we propose a Multi-Grained Interaction framework for Multi-Modal Entity alignment.
arXiv Detail & Related papers (2024-04-19T08:43:11Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Multi-Grained Multimodal Interaction Network for Entity Linking [65.30260033700338]
Multimodal entity linking task aims at resolving ambiguous mentions to a multimodal knowledge graph.
We propose a novel Multi-GraIned Multimodal InteraCtion Network $textbf(MIMIC)$ framework for solving the MEL task.
arXiv Detail & Related papers (2023-07-19T02:11:19Z) - Multi-scale Cooperative Multimodal Transformers for Multimodal Sentiment
Analysis in Videos [58.93586436289648]
We propose a multi-scale cooperative multimodal transformer (MCMulT) architecture for multimodal sentiment analysis.
Our model outperforms existing approaches on unaligned multimodal sequences and has strong performance on aligned multimodal sequences.
arXiv Detail & Related papers (2022-06-16T07:47:57Z) - Abstractive Sentence Summarization with Guidance of Selective Multimodal
Reference [3.505062507621494]
We propose a Multimodal Hierarchical Selective Transformer (mhsf) model that considers reciprocal relationships among modalities.
We evaluate the generalism of proposed mhsf model with the pre-trained+fine-tuning and fresh training strategies.
arXiv Detail & Related papers (2021-08-11T09:59:34Z) - Learning Deep Multimodal Feature Representation with Asymmetric
Multi-layer Fusion [63.72912507445662]
We propose a compact and effective framework to fuse multimodal features at multiple layers in a single network.
We verify that multimodal features can be learnt within a shared single network by merely maintaining modality-specific batch normalization layers in the encoder.
Secondly, we propose a bidirectional multi-layer fusion scheme, where multimodal features can be exploited progressively.
arXiv Detail & Related papers (2021-08-11T03:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.