論文の概要: Revealing and Utilizing In-group Favoritism for Graph-based Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2404.17598v1
- Date: Tue, 23 Apr 2024 06:43:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:10:08.328378
- Title: Revealing and Utilizing In-group Favoritism for Graph-based Collaborative Filtering
- Title(参考訳): グラフベース協調フィルタリングにおけるグループ内特性の探索と利用
- Authors: Hoin Jung, Hyunsoo Cho, Myungje Choi, Joowon Lee, Jung Ho Park, Myungjoo Kang,
- Abstract要約: ユーザとアイテムの共同クラスタをクラスタリングアルゴリズムで計算し、各クラスタにCFworksを追加して、グループ内の好意を抽出する。
2つの側面から実世界のデータセットを実験し、グループ内での好みに応じて分割されたグループの数を求め、改善の量を測定した。
- 参考スコア(独自算出の注目度): 9.067610121749777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When it comes to a personalized item recommendation system, It is essential to extract users' preferences and purchasing patterns. Assuming that users in the real world form a cluster and there is common favoritism in each cluster, in this work, we introduce Co-Clustering Wrapper (CCW). We compute co-clusters of users and items with co-clustering algorithms and add CF subnetworks for each cluster to extract the in-group favoritism. Combining the features from the networks, we obtain rich and unified information about users. We experimented real world datasets considering two aspects: Finding the number of groups divided according to in-group preference, and measuring the quantity of improvement of the performance.
- Abstract(参考訳): パーソナライズされたアイテムレコメンデーションシステムに関しては,ユーザの好みや購入パターンを抽出することが不可欠である。
実世界のユーザがクラスタを形成し、各クラスタに共通の好意があると仮定すると、この作業では、Co-Clustering Wrapper (CCW)を導入します。
ユーザとアイテムの共同クラスタをクラスタリングアルゴリズムで計算し、各クラスタにCFサブネットワークを追加して、グループ内の好意を抽出する。
ネットワークからの機能を組み合わせることで,ユーザに関するリッチで統一された情報が得られる。
2つの側面から実世界のデータセットを実験し、グループ内での嗜好に応じて分割されたグループ数を求め、性能改善の量を測定した。
関連論文リスト
- Co-clustering for Federated Recommender System [33.70723179405055]
Federated Recommender System(FRS)は、高品質なレコメンデーションの提供とユーザのプライバシの保護のバランスをとるソリューションを提供する。
パーソナライズされた意思決定パターンによって一般的に観察されるFRSにおける統計的不均一性の存在は、課題を引き起こす可能性がある。
本稿では,Co-clustering Federated RecommendationメカニズムであるCoFedRecを提案する。
論文 参考訳(メタデータ) (2024-11-03T21:32:07Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
グラフ畳み込みネットワーク(GCN)は、レコメンデーションシステムのためのユーザおよびアイテム表現の学習に成功している。
既存のGCNベースのほとんどのメソッドは、高階グラフ畳み込みを実行しながら、ユーザの複数の関心事を見落としている。
クラスタベースグラフ協調フィルタリング(ClusterGCF)と呼ばれる新しいGCNベースのレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2024-04-16T07:05:16Z) - Dynamically Weighted Federated k-Means [0.0]
フェデレートされたクラスタリングにより、複数のデータソースが協力してデータをクラスタリングし、分散化とプライバシ保護を維持できる。
我々は,ロイドのk-meansクラスタリング法に基づいて,動的に重み付けされたk-means (DWF k-means) という新しいクラスタリングアルゴリズムを提案する。
我々は、クラスタリングスコア、精度、およびv尺度の観点から、アルゴリズムの性能を評価するために、複数のデータセットとデータ分散設定の実験を行う。
論文 参考訳(メタデータ) (2023-10-23T12:28:21Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
本稿では,Reinforcement Graph Clusteringと呼ばれる新しいディープグラフクラスタリング手法を提案する。
提案手法では,クラスタ数決定と教師なし表現学習を統一的なフレームワークに統合する。
フィードバック動作を行うために、クラスタリング指向の報酬関数を提案し、同一クラスタの凝集を高め、異なるクラスタを分離する。
論文 参考訳(メタデータ) (2023-08-13T18:12:28Z) - Large Language Models Enable Few-Shot Clustering [88.06276828752553]
大規模言語モデルは、クエリ効率が良く、数発のセミ教師付きテキストクラスタリングを可能にするために、専門家のガイダンスを増幅できることを示す。
最初の2つのステージにLSMを組み込むことで、クラスタの品質が大幅に向上することがわかった。
論文 参考訳(メタデータ) (2023-07-02T09:17:11Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
本稿では,Ensembles (DeepCluE) を用いたDeep Clusteringを提案する。
ディープニューラルネットワークにおける複数のレイヤのパワーを活用することで、ディープクラスタリングとアンサンブルクラスタリングのギャップを埋める。
6つの画像データセットの実験結果から、最先端のディープクラスタリングアプローチに対するDeepCluEの利点が確認されている。
論文 参考訳(メタデータ) (2022-06-01T09:51:38Z) - Overcoming Data Sparsity in Group Recommendation [52.00998276970403]
グループレコメンデータシステムは、ユーザの個人的な好みだけでなく、嗜好集約戦略も正確に学習できなければならない。
本稿では,BGEM(Bipartite Graphding Model)とGCN(Graph Convolutional Networks)を基本構造として,グループとユーザ表現を統一的に学習する。
論文 参考訳(メタデータ) (2020-10-02T07:11:19Z) - GroupIM: A Mutual Information Maximization Framework for Neural Group
Recommendation [24.677145454396822]
本研究では,歴史的活動が限定的あるいは全くないユーザで構成された短命グループを対象とした項目推薦の課題について検討する。
現存する研究は、活動の歴史がかなりある永続的なグループをターゲットにしているが、短命なグループは歴史的な相互作用を欠いている。
本研究では、同一グループに属するユーザ間の嗜好共分散と、各グループに対する個人の嗜好の文脈的関連性の両方を活用するために、データ駆動型正規化戦略を提案する。
論文 参考訳(メタデータ) (2020-06-05T23:18:19Z) - Multi-objective Consensus Clustering Framework for Flight Search
Recommendation [4.5782961896413035]
クラスタリング・アンサンブル・アプローチは、古典的なクラスタリング・アプローチのよく知られた問題を克服するために開発された。
本稿では,Amadeusの顧客検索データを解析するために,クラスタリングアンサンブルを用いた多目的最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-20T03:56:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。