MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations
- URL: http://arxiv.org/abs/2404.17611v1
- Date: Fri, 26 Apr 2024 06:31:44 GMT
- Title: MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations
- Authors: Jing Hu, Honghu Zhang, Peng Zheng, Jialin Mu, Xiaomeng Huang, Xi Wu,
- Abstract summary: This paper proposes a unified downscaling approach leveraging meta-learning.
We trained variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS.
The proposed method can be extended to downscale convective precipitation, potential, energy height, humidity CFS, S2S and CMIP6 at differenttemporal scales.
- Score: 8.71735078449217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing complex meteorological processes at a fine spatial resolution requires substantial computational resources. To accelerate meteorological simulations, researchers have utilized neural networks to downscale meteorological variables from low-resolution simulations. Despite notable advancements, contemporary cutting-edge downscaling algorithms tailored to specific variables. Addressing meteorological variables in isolation overlooks their interconnectedness, leading to an incomplete understanding of atmospheric dynamics. Additionally, the laborious processes of data collection, annotation, and computational resources required for individual variable downscaling are significant hurdles. Given the limited versatility of existing models across different meteorological variables and their failure to account for inter-variable relationships, this paper proposes a unified downscaling approach leveraging meta-learning. This framework aims to facilitate the downscaling of diverse meteorological variables derived from various numerical models and spatiotemporal scales. Trained at variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS, the proposed method can be extended to downscale convective precipitation, potential energy, height, humidity and ozone from CFS, S2S and CMIP6 at different spatiotemporal scales, which demonstrating its capability to capture the interconnections among diverse variables. Our approach represents the initial effort to create a generalized downscaling model. Experimental evidence demonstrates that the proposed model outperforms existing top downscaling methods in both quantitative and qualitative assessments.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Cluster-Segregate-Perturb (CSP): A Model-agnostic Explainability Pipeline for Spatiotemporal Land Surface Forecasting Models [5.586191108738564]
This paper introduces a pipeline that integrates principles from both perturbation-based explainability techniques like LIME and global marginal explainability like PDP.
The proposed pipeline simplifies the undertaking of diverse investigative analyses, such as marginal sensitivity analysis, marginal correlation analysis, lag analysis, etc., on complex land surface forecasting models.
arXiv Detail & Related papers (2024-08-12T04:29:54Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Efficient modeling of sub-kilometer surface wind with Gaussian processes and neural networks [0.0]
Wind represents a particularly challenging variable to model due to its high spatial and temporal variability.
This paper presents a novel approach that integrates Gaussian processes and neural networks to model surface wind gusts at sub-kilometer resolution.
arXiv Detail & Related papers (2024-05-21T09:07:47Z) - Diffusion-Based Joint Temperature and Precipitation Emulation of Earth System Models [0.724847561444869]
We extend previous work that used a generative probabilistic diffusion model to emulate Earth system models (ESMs)
Our results show the outputs from our extended model closely resemble those from ESMs on various climate metrics including dry spells and hot streaks.
arXiv Detail & Related papers (2024-04-12T20:13:19Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - Real-time high-resolution CO$_2$ geological storage prediction using
nested Fourier neural operators [58.728312684306545]
Carbon capture and storage (CCS) plays an essential role in global decarbonization.
Scaling up CCS deployment requires accurate and high-resolution modeling of the storage reservoir pressure buildup and the gaseous plume migration.
We introduce Nested Fourier Neural Operator (FNO), a machine-learning framework for high-resolution dynamic 3D CO2 storage modeling at a basin scale.
arXiv Detail & Related papers (2022-10-31T04:04:03Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
We present auxiliary informed-temporal neural architecture for statistical downscaling.
Current study performs daily downscaling of precipitation variable from an ESM output at 1.15 degrees (115 km) to 0.25 degrees (25 km) over the world's most climatically diversified country, India.
arXiv Detail & Related papers (2020-09-23T17:52:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.