Diffusion-Based Joint Temperature and Precipitation Emulation of Earth System Models
- URL: http://arxiv.org/abs/2404.08797v1
- Date: Fri, 12 Apr 2024 20:13:19 GMT
- Title: Diffusion-Based Joint Temperature and Precipitation Emulation of Earth System Models
- Authors: Katie Christensen, Lyric Otto, Seth Bassetti, Claudia Tebaldi, Brian Hutchinson,
- Abstract summary: We extend previous work that used a generative probabilistic diffusion model to emulate Earth system models (ESMs)
Our results show the outputs from our extended model closely resemble those from ESMs on various climate metrics including dry spells and hot streaks.
- Score: 0.724847561444869
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Earth system models (ESMs) are the principal tools used in climate science to generate future climate projections under various atmospheric emissions scenarios on a global or regional scale. Generative deep learning approaches are suitable for emulating these tools due to their computational efficiency and ability, once trained, to generate realizations in a fraction of the time required by ESMs. We extend previous work that used a generative probabilistic diffusion model to emulate ESMs by targeting the joint emulation of multiple variables, temperature and precipitation, by a single diffusion model. Joint generation of multiple variables is critical to generate realistic samples of phenomena resulting from the interplay of multiple variables. The diffusion model emulator takes in the monthly mean-maps of temperature and precipitation and produces the daily values of each of these variables that exhibit statistical properties similar to those generated by ESMs. Our results show the outputs from our extended model closely resemble those from ESMs on various climate metrics including dry spells and hot streaks, and that the joint distribution of temperature and precipitation in our sample closely matches those of ESMs.
Related papers
- On conditional diffusion models for PDE simulations [53.01911265639582]
We study score-based diffusion models for forecasting and assimilation of sparse observations.
We propose an autoregressive sampling approach that significantly improves performance in forecasting.
We also propose a new training strategy for conditional score-based models that achieves stable performance over a range of history lengths.
arXiv Detail & Related papers (2024-10-21T18:31:04Z) - DiffESM: Conditional Emulation of Temperature and Precipitation in Earth System Models with 3D Diffusion Models [0.7776497736451751]
Earth System Models (ESMs) are essential for understanding the interaction between human activities and the Earth's climate.
ESMs often limit the number of simulations that can be run, hindering the robust analysis of risks associated with extreme weather events.
We propose using diffusion models, a class of generative deep learning models, to effectively downscale ESM output from a monthly to a daily frequency.
arXiv Detail & Related papers (2024-09-17T23:20:05Z) - MetaSD: A Unified Framework for Scalable Downscaling of Meteorological Variables in Diverse Situations [8.71735078449217]
This paper proposes a unified downscaling approach leveraging meta-learning.
We trained variables consisted of temperature, wind, surface pressure and total precipitation from ERA5 and GFS.
The proposed method can be extended to downscale convective precipitation, potential, energy height, humidity CFS, S2S and CMIP6 at differenttemporal scales.
arXiv Detail & Related papers (2024-04-26T06:31:44Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
Diffusion models (DPMs) have rapidly evolved to be one of the predominant generative models for the simulation of synthetic data.
We propose using DPMs for the generation of synthetic individual location trajectories (ILTs) which are sequences of variables representing physical locations visited by individuals.
arXiv Detail & Related papers (2024-02-19T15:57:39Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - FengWu-4DVar: Coupling the Data-driven Weather Forecasting Model with 4D Variational Assimilation [67.20588721130623]
We develop an AI-based cyclic weather forecasting system, FengWu-4DVar.
FengWu-4DVar can incorporate observational data into the data-driven weather forecasting model.
Experiments on the simulated observational dataset demonstrate that FengWu-4DVar is capable of generating reasonable analysis fields.
arXiv Detail & Related papers (2023-12-16T02:07:56Z) - DiffESM: Conditional Emulation of Earth System Models with Diffusion
Models [2.1989764549743476]
A key application of Earth System Models (ESMs) is studying extreme weather events, such as heat waves or dry spells.
We show that diffusion models can effectively emulate the trends of ESMs under previously unseen climate scenarios.
arXiv Detail & Related papers (2023-04-23T17:12:33Z) - Differentiable Programming for Earth System Modeling [0.0]
State-of-the-art Earth System Models (ESMs) can reproduce the observational global mean temperature anomalies of the last 150 years.
We argue that making ESMs automatically differentiable has huge potential to advance ESMs.
arXiv Detail & Related papers (2022-08-29T18:32:24Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - DeepClimGAN: A High-Resolution Climate Data Generator [60.59639064716545]
Earth system models (ESMs) are often used to generate future projections of climate change scenarios.
As a compromise, emulators are substantially less expensive but may not have all of the complexity of an ESM.
Here we demonstrate the use of a conditional generative adversarial network (GAN) to act as an ESM emulator.
arXiv Detail & Related papers (2020-11-23T20:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.