論文の概要: Beyond Traditional Threats: A Persistent Backdoor Attack on Federated Learning
- arxiv url: http://arxiv.org/abs/2404.17617v1
- Date: Fri, 26 Apr 2024 11:47:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 20:00:20.317056
- Title: Beyond Traditional Threats: A Persistent Backdoor Attack on Federated Learning
- Title(参考訳): 従来の脅威を超えて - フェデレートラーニングに対する永続的なバックドア攻撃
- Authors: Tao Liu, Yuhang Zhang, Zhu Feng, Zhiqin Yang, Chen Xu, Dapeng Man, Wu Yang,
- Abstract要約: 我々は、攻撃持続性と呼ばれる、この弱められたバックドア効果の度合いを定量化するために、新しい指標を使用する。
この性能を改善するための研究はあまり注目されていないことから,本研究ではFCBA(Full Combination Backdoor Attack)法を提案する。
- 参考スコア(独自算出の注目度): 6.172141049724371
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Backdoors on federated learning will be diluted by subsequent benign updates. This is reflected in the significant reduction of attack success rate as iterations increase, ultimately failing. We use a new metric to quantify the degree of this weakened backdoor effect, called attack persistence. Given that research to improve this performance has not been widely noted,we propose a Full Combination Backdoor Attack (FCBA) method. It aggregates more combined trigger information for a more complete backdoor pattern in the global model. Trained backdoored global model is more resilient to benign updates, leading to a higher attack success rate on the test set. We test on three datasets and evaluate with two models across various settings. FCBA's persistence outperforms SOTA federated learning backdoor attacks. On GTSRB, postattack 120 rounds, our attack success rate rose over 50% from baseline. The core code of our method is available at https://github.com/PhD-TaoLiu/FCBA.
- Abstract(参考訳): 連合学習のバックドアは、その後の良心的なアップデートによって希薄になる。
これは、イテレーションが増加し、最終的に失敗するにつれて、攻撃の成功率の大幅な低下を反映している。
我々は、アタック永続性と呼ばれる、この弱められたバックドア効果の度合いを定量化するために、新しいメトリクスを使用します。
この性能を改善するための研究はあまり注目されていないことから,本研究ではFCBA(Full Combination Backdoor Attack)法を提案する。
グローバルモデルにおいて、より完全なバックドアパターンのための、より複合的なトリガ情報を収集します。
トレーニングされたバックドアのグローバルモデルでは、更新の良し悪しが増し、テストセットでの攻撃成功率が向上する。
3つのデータセットをテストし、さまざまな設定で2つのモデルで評価する。
FCBAの永続性はSOTAの学習バックドア攻撃よりも優れています。
GTSRBでは,120発の攻撃後,攻撃成功率はベースラインから50%以上上昇した。
私たちのメソッドのコアコードはhttps://github.com/PhD-TaoLiu/FCBA.comで公開されています。
関連論文リスト
- Act in Collusion: A Persistent Distributed Multi-Target Backdoor in Federated Learning [5.91728247370845]
フェデレーション学習は、その分散した性質のため、バックドア攻撃に対して脆弱である。
我々は、分散マルチターゲットバックドアであるフェデレーション学習のためのより実用的な脅威モデルを提案する。
攻撃後30ラウンド、各種顧客からの3つの異なるバックドアのアタック成功率は93%以上である。
論文 参考訳(メタデータ) (2024-11-06T13:57:53Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
本稿では,機械学習という概念を用いて,バックドアの脅威に対する効果的な防御機構を提案する。
これは、モデルがバックドアの脆弱性を迅速に学習するのを助けるために、小さな毒のサンプルを戦略的に作成することを必要とする。
バックドア・アンラーニング・プロセスでは,新しいトークン・ベースの非ラーニング・トレーニング・システムを提案する。
論文 参考訳(メタデータ) (2024-09-29T02:55:38Z) - Revisiting Backdoor Attacks against Large Vision-Language Models [76.42014292255944]
本稿では,LVLMの命令チューニングにおけるバックドア攻撃の一般化可能性について実験的に検討する。
以上に基づいて,既存のバックドア攻撃を修正した。
本稿では,従来のシンプルなバックドア戦略でさえ,LVLMに深刻な脅威をもたらすことを指摘する。
論文 参考訳(メタデータ) (2024-06-27T02:31:03Z) - TrojFM: Resource-efficient Backdoor Attacks against Very Large Foundation Models [69.37990698561299]
TrojFMは、非常に大きな基礎モデルに適した、新しいバックドア攻撃である。
提案手法では,モデルパラメータのごく一部のみを微調整することでバックドアを注入する。
広範に使われている大規模GPTモデルに対して,TrojFMが効果的なバックドアアタックを起動できることを実証する。
論文 参考訳(メタデータ) (2024-05-27T03:10:57Z) - Dual Model Replacement:invisible Multi-target Backdoor Attack based on Federal Learning [21.600003684064706]
本稿では,フェデレート学習に基づくバックドア攻撃手法を設計する。
バックドアトリガの隠蔽を目的としたエンコーダデコーダ構造を備えたトロイジャンガンステガノグラフィーモデルが設計されている。
フェデレート学習に基づく二重モデル置換バックドア攻撃アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-04-22T07:44:02Z) - Does Few-shot Learning Suffer from Backdoor Attacks? [63.9864247424967]
数発の学習がバックドアアタックに対して脆弱であることは明らかです。
本手法は,FSLタスクにおける攻撃成功率(ASR)を,異なる数発の学習パラダイムで示す。
この研究は、数発の学習がまだバックドア攻撃に悩まされており、そのセキュリティに注意を払う必要があることを明らかにしている。
論文 参考訳(メタデータ) (2023-12-31T06:43:36Z) - Backdoor Attack with Sparse and Invisible Trigger [57.41876708712008]
ディープニューラルネットワーク(DNN)は、バックドア攻撃に対して脆弱である。
バックドアアタックは、訓練段階の脅威を脅かしている。
軽度で目に見えないバックドアアタック(SIBA)を提案する。
論文 参考訳(メタデータ) (2023-05-11T10:05:57Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - BaFFLe: Backdoor detection via Feedback-based Federated Learning [3.6895394817068357]
フィードバックに基づくフェデレーション学習(BAFFLE)によるバックドア検出を提案する。
BAFFLEは,最先端のバックドア攻撃を100%,偽陽性率5%以下で確実に検出できることを示す。
論文 参考訳(メタデータ) (2020-11-04T07:44:51Z) - BadNL: Backdoor Attacks against NLP Models with Semantic-preserving
Improvements [33.309299864983295]
我々は,新たな攻撃方法を含む一般的なNLPバックドア攻撃フレームワークであるBadNLを提案する。
我々の攻撃は、原モデルの実用性に無視できる効果で、ほぼ完璧な攻撃成功率を達成する。
論文 参考訳(メタデータ) (2020-06-01T16:17:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。