SiamQuality: A ConvNet-Based Foundation Model for Imperfect Physiological Signals
- URL: http://arxiv.org/abs/2404.17667v1
- Date: Fri, 26 Apr 2024 19:20:42 GMT
- Title: SiamQuality: A ConvNet-Based Foundation Model for Imperfect Physiological Signals
- Authors: Cheng Ding, Zhicheng Guo, Zhaoliang Chen, Randall J Lee, Cynthia Rudin, Xiao Hu,
- Abstract summary: We propose a novel self-supervised learning task based on convolutional neural networks (CNNs) as the backbone to enforce representations to be similar for good and poor quality signals.
We leverage a large dataset of photoplethysmography signals from hospitalized intensive care patients.
Our method indicates that CNNs can be an effective backbone for foundation models that are robust to training data quality.
- Score: 20.574424407296586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Foundation models, especially those using transformers as backbones, have gained significant popularity, particularly in language and language-vision tasks. However, large foundation models are typically trained on high-quality data, which poses a significant challenge, given the prevalence of poor-quality real-world data. This challenge is more pronounced for developing foundation models for physiological data; such data are often noisy, incomplete, or inconsistent. The present work aims to provide a toolset for developing foundation models on physiological data. We leverage a large dataset of photoplethysmography (PPG) signals from hospitalized intensive care patients. For this data, we propose SimQuality, a novel self-supervised learning task based on convolutional neural networks (CNNs) as the backbone to enforce representations to be similar for good and poor quality signals that are from similar physiological states. We pre-trained the SimQuality on over 36 million 30-second PPG pairs and then fine-tuned and tested on six downstream tasks using external datasets. The results demonstrate the superiority of the proposed approach on all the downstream tasks, which are extremely important for heart monitoring on wearable devices. Our method indicates that CNNs can be an effective backbone for foundation models that are robust to training data quality.
Related papers
- How Good Are We? Evaluating Cell AI Foundation Models in Kidney Pathology with Human-in-the-Loop Enrichment [11.60167559546617]
Training AI foundation models have emerged as a promising large-scale learning approach for addressing real-world healthcare challenges.
While many of these models have been developed for tasks like disease diagnosis and tissue quantification, their readiness for deployment on some arguably simplest tasks, such as nuclei segmentation within a single organ, remains uncertain.
This paper seeks to answer this key question, "How good are we?" by thoroughly evaluating the performance of recent cell foundation models on a curated dataset.
arXiv Detail & Related papers (2024-10-31T17:00:33Z) - Multi-OCT-SelfNet: Integrating Self-Supervised Learning with Multi-Source Data Fusion for Enhanced Multi-Class Retinal Disease Classification [2.5091334993691206]
Development of a robust deep-learning model for retinal disease diagnosis requires a substantial dataset for training.
The capacity to generalize effectively on smaller datasets remains a persistent challenge.
We've combined a wide range of data sources to improve performance and generalization to new data.
arXiv Detail & Related papers (2024-09-17T17:22:35Z) - Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models [115.501751261878]
Fine-tuning language models(LMs) on human-generated data remains a prevalent practice.
We investigate whether we can go beyond human data on tasks where we have access to scalar feedback.
We find that ReST$EM$ scales favorably with model size and significantly surpasses fine-tuning only on human data.
arXiv Detail & Related papers (2023-12-11T18:17:43Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Towards Robust Dataset Learning [90.2590325441068]
We propose a principled, tri-level optimization to formulate the robust dataset learning problem.
Under an abstraction model that characterizes robust vs. non-robust features, the proposed method provably learns a robust dataset.
arXiv Detail & Related papers (2022-11-19T17:06:10Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - Benchmarking and Analyzing 3D Human Pose and Shape Estimation Beyond
Algorithms [31.2529724533643]
This work presents the first comprehensive benchmarking study from three under-explored perspectives beyond algorithms.
An analysis on 31 datasets reveals the distinct impacts of data samples.
We achieve a PA-MPJPE of 47.3 mm on the 3DPW test set with a relatively simple model.
arXiv Detail & Related papers (2022-09-21T17:39:53Z) - Investigating the Predictive Reproducibility of Federated Graph Neural
Networks using Medical Datasets [0.0]
We present the first work investigating the application of federated GNN models with application to classifying medical imaging and brain connectivity datasets.
We showed that federated learning boosts both the accuracy and accuracy of GNN models in such medical learning tasks.
arXiv Detail & Related papers (2022-09-13T14:32:03Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
This work takes a data-centric perspective and investigates multiple critical aspects in "data engineering"
We collect and annotate a large-scale human image dataset with over 230K samples capturing diverse poses and textures.
We rigorously investigate three essential factors in data engineering for StyleGAN-based human generation, namely data size, data distribution, and data alignment.
arXiv Detail & Related papers (2022-04-25T17:55:08Z) - Feature robustness and sex differences in medical imaging: a case study
in MRI-based Alzheimer's disease detection [1.7616042687330637]
We compare two classification schemes on the ADNI MRI dataset.
We do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset.
arXiv Detail & Related papers (2022-04-04T17:37:54Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.