Knowledge Transfer for Cross-Domain Reinforcement Learning: A Systematic Review
- URL: http://arxiv.org/abs/2404.17687v2
- Date: Wed, 20 Nov 2024 19:02:48 GMT
- Title: Knowledge Transfer for Cross-Domain Reinforcement Learning: A Systematic Review
- Authors: Sergio A. Serrano, Jose Martinez-Carranza, L. Enrique Sucar,
- Abstract summary: Reinforcement Learning (RL) provides a framework in which agents can be trained, via trial and error, to solve complex decision-making problems.
By reusing knowledge from a different task, knowledge transfer methods present an alternative to reduce the training time in RL.
This review presents a unifying analysis of methods focused on transferring knowledge across different domains.
- Score: 2.94944680995069
- License:
- Abstract: Reinforcement Learning (RL) provides a framework in which agents can be trained, via trial and error, to solve complex decision-making problems. Learning with little supervision causes RL methods to require large amounts of data, rendering them too expensive for many applications (e.g., robotics). By reusing knowledge from a different task, knowledge transfer methods present an alternative to reduce the training time in RL. Given the severe data scarcity, due to their flexibility, there has been a growing interest in methods capable of transferring knowledge across different domains (i.e., problems with different representations). However, identifying similarities and adapting knowledge across tasks from different domains requires matching their representations or finding domain-invariant features. These processes can be data-demanding, which poses the main challenge in cross-domain knowledge transfer: to select and transform knowledge in a data-efficient way, such that it accelerates learning in the target task, despite the presence of significant differences across problems (e.g., robots with distinct morphologies). Thus, this review presents a unifying analysis of methods focused on transferring knowledge across different domains. Through a taxonomy based on a transfer-approach categorization and a characterization of works based on their data-assumption requirements, the contributions of this article are 1) a comprehensive and systematic revision of knowledge transfer methods for the cross-domain RL setting, 2) a categorization and characterization of such methods to provide an analysis based on relevant features such as their transfer approach and data requirements, and 3) a discussion on the main challenges regarding cross-domain knowledge transfer, as well as on ideas of future directions worth exploring to address these problems.
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - CrowdTransfer: Enabling Crowd Knowledge Transfer in AIoT Community [12.002871068635748]
Crowd Knowledge Transfer (CrowdTransfer) aims to transfer prior knowledge learned from a crowd of agents to reduce the training cost.
We present four transfer modes from the perspective of crowd intelligence, including derivation, sharing, evolution and fusion modes.
We explore some applications of AIoT areas, such as human activity recognition, urban computing, multi-robot system, and smart factory.
arXiv Detail & Related papers (2024-07-09T01:20:37Z) - A Recent Survey of Heterogeneous Transfer Learning [15.830786437956144]
heterogeneous transfer learning has become a vital strategy in various tasks.
We offer an extensive review of over 60 HTL methods, covering both data-based and model-based approaches.
We explore applications in natural language processing, computer vision, multimodal learning, and biomedicine.
arXiv Detail & Related papers (2023-10-12T16:19:58Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
This study investigates the transferability of deep learning representations between different EEG decoding tasks.
We conduct extensive experiments using state-of-the-art decoding models on two recently released EEG datasets.
arXiv Detail & Related papers (2023-07-28T14:51:09Z) - Graph Enabled Cross-Domain Knowledge Transfer [1.52292571922932]
Cross-Domain Knowledge Transfer is an approach to mitigate the gap between good representation learning and the scarce knowledge in the domain of interest.
From the machine learning perspective, the paradigm of semi-supervised learning takes advantage of large amount of data without ground truth and achieves impressive learning performance improvement.
arXiv Detail & Related papers (2023-04-07T03:02:10Z) - Multi-Source Transfer Learning for Deep Model-Based Reinforcement
Learning [0.6445605125467572]
A crucial challenge in reinforcement learning is to reduce the number of interactions with the environment that an agent requires to master a given task.
Transfer learning proposes to address this issue by re-using knowledge from previously learned tasks.
The goal of this paper is to address these issues with modular multi-source transfer learning techniques.
arXiv Detail & Related papers (2022-05-28T12:04:52Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Knowledge as Invariance -- History and Perspectives of
Knowledge-augmented Machine Learning [69.99522650448213]
Research in machine learning is at a turning point.
Research interests are shifting away from increasing the performance of highly parameterized models to exceedingly specific tasks.
This white paper provides an introduction and discussion of this emerging field in machine learning research.
arXiv Detail & Related papers (2020-12-21T15:07:19Z) - What is being transferred in transfer learning? [51.6991244438545]
We show that when training from pre-trained weights, the model stays in the same basin in the loss landscape.
We present that when training from pre-trained weights, the model stays in the same basin in the loss landscape and different instances of such model are similar in feature space and close in parameter space.
arXiv Detail & Related papers (2020-08-26T17:23:40Z) - Domain Adaption for Knowledge Tracing [65.86619804954283]
We propose a novel adaptable framework, namely knowledge tracing (AKT) to address the DAKT problem.
For the first aspect, we incorporate the educational characteristics (e.g., slip, guess, question texts) based on the deep knowledge tracing (DKT) to obtain a good performed knowledge tracing model.
For the second aspect, we propose and adopt three domain adaptation processes. First, we pre-train an auto-encoder to select useful source instances for target model training.
arXiv Detail & Related papers (2020-01-14T15:04:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.