Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review
- URL: http://arxiv.org/abs/2411.10268v1
- Date: Fri, 15 Nov 2024 15:18:57 GMT
- Title: Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review
- Authors: Hossein Hassani, Roozbeh Razavi-Far, Mehrdad Saif, Liang Lin,
- Abstract summary: This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
- Score: 50.67937325077047
- License:
- Abstract: Reinforcement learning (RL) is a sub-domain of machine learning, mainly concerned with solving sequential decision-making problems by a learning agent that interacts with the decision environment to improve its behavior through the reward it receives from the environment. This learning paradigm is, however, well-known for being time-consuming due to the necessity of collecting a large amount of data, making RL suffer from sample inefficiency and difficult generalization. Furthermore, the construction of an explicit reward function that accounts for the trade-off between multiple desiderata of a decision problem is often a laborious task. These challenges have been recently addressed utilizing transfer and inverse reinforcement learning (T-IRL). In this regard, this paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through T-IRL. Following a brief introduction to RL, the fundamental T-IRL methods are presented and the most recent advancements in each research field have been extensively reviewed. Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies for the efficient transfer of knowledge from source domains to the target domain under the transfer learning scheme. Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
Related papers
- A Survey On Enhancing Reinforcement Learning in Complex Environments: Insights from Human and LLM Feedback [1.0359008237358598]
This paper focuses on problems of two-folds: firstly, we focus on humans or an LLMs assistance, investigating the ways in which these entities may collaborate with the RL agent in order to foster optimal behavior and expedite learning; secondly, we delve into the research papers dedicated to addressing the intricacies of environments characterized by large observation space.
arXiv Detail & Related papers (2024-11-20T15:52:03Z) - Efficient Reinforcement Learning with Large Language Model Priors [18.72288751305885]
Large language models (LLMs) have recently emerged as powerful general-purpose tools.
We propose treating LLMs as prior action distributions and integrating them into RL frameworks.
We show that incorporating LLM-based action priors significantly reduces exploration and complexity optimization.
arXiv Detail & Related papers (2024-10-10T13:54:11Z) - State-Space Modeling in Long Sequence Processing: A Survey on Recurrence in the Transformer Era [59.279784235147254]
This survey provides an in-depth summary of the latest approaches that are based on recurrent models for sequential data processing.
The emerging picture suggests that there is room for thinking of novel routes, constituted by learning algorithms which depart from the standard Backpropagation Through Time.
arXiv Detail & Related papers (2024-06-13T12:51:22Z) - A Survey on Applications of Reinforcement Learning in Spatial Resource
Allocation [5.821318691099762]
The challenge of spatial resource allocation is pervasive across various domains such as transportation, industry, and daily life.
Traditional algorithms face significant computational pressures, struggling to achieve optimal efficiency and real-time capabilities.
In recent years, there has been a surge in novel methods employing reinforcement learning to tackle spatial resource allocation problems.
arXiv Detail & Related papers (2024-03-06T12:05:56Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - Human-Inspired Framework to Accelerate Reinforcement Learning [1.6317061277457001]
Reinforcement learning (RL) is crucial for data science decision-making but suffers from sample inefficiency.
This paper introduces a novel human-inspired framework to enhance RL algorithm sample efficiency.
arXiv Detail & Related papers (2023-02-28T13:15:04Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Exploratory State Representation Learning [63.942632088208505]
We propose a new approach called XSRL (eXploratory State Representation Learning) to solve the problems of exploration and SRL in parallel.
On one hand, it jointly learns compact state representations and a state transition estimator which is used to remove unexploitable information from the representations.
On the other hand, it continuously trains an inverse model, and adds to the prediction error of this model a $k$-step learning progress bonus to form the objective of a discovery policy.
arXiv Detail & Related papers (2021-09-28T10:11:07Z) - Fractional Transfer Learning for Deep Model-Based Reinforcement Learning [0.966840768820136]
Reinforcement learning (RL) is well known for requiring large amounts of data in order for RL agents to learn to perform complex tasks.
Recent progress in model-based RL allows agents to be much more data-efficient.
We present a simple alternative approach: fractional transfer learning.
arXiv Detail & Related papers (2021-08-14T12:44:42Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.