論文の概要: Deep Learning for Melt Pool Depth Contour Prediction From Surface Thermal Images via Vision Transformers
- arxiv url: http://arxiv.org/abs/2404.17699v1
- Date: Fri, 26 Apr 2024 20:55:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-30 19:50:27.861048
- Title: Deep Learning for Melt Pool Depth Contour Prediction From Surface Thermal Images via Vision Transformers
- Title(参考訳): 視覚変換器を用いた表面熱画像からの溶融プール深さパターン予測の深層学習
- Authors: Francis Ogoke, Peter Myung-Won Pak, Alexander Myers, Guadalupe Quirarte, Jack Beuth, Jonathan Malen, Amir Barati Farimani,
- Abstract要約: レーザー粉層融合(L-PBF)時に発生する溶融プール間の十分な重なり合いは、核融合欠陥の欠如につながる。
高速カラーイメージングにより観察されたその場2色熱画像と溶融プール断面の2次元形状を相関付ける機械学習フレームワークを提案する。
- 参考スコア(独自算出の注目度): 40.80426609561942
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Insufficient overlap between the melt pools produced during Laser Powder Bed Fusion (L-PBF) can lead to lack-of-fusion defects and deteriorated mechanical and fatigue performance. In-situ monitoring of the melt pool subsurface morphology requires specialized equipment that may not be readily accessible or scalable. Therefore, we introduce a machine learning framework to correlate in-situ two-color thermal images observed via high-speed color imaging to the two-dimensional profile of the melt pool cross-section. Specifically, we employ a hybrid CNN-Transformer architecture to establish a correlation between single bead off-axis thermal image sequences and melt pool cross-section contours measured via optical microscopy. In this architecture, a ResNet model embeds the spatial information contained within the thermal images to a latent vector, while a Transformer model correlates the sequence of embedded vectors to extract temporal information. Our framework is able to model the curvature of the subsurface melt pool structure, with improved performance in high energy density regimes compared to analytical melt pool models. The performance of this model is evaluated through dimensional and geometric comparisons to the corresponding experimental melt pool observations.
- Abstract(参考訳): レーザー粉層融合(L-PBF)で生成する溶融プール間の十分な重なり合いは、融解欠陥の欠如と機械的および疲労性能の低下につながる可能性がある。
溶融プール地下形態のその場監視には、容易にアクセスできない、または拡張性のない特殊な装置が必要である。
そこで本研究では,高速カラーイメージングにより観察された2色熱画像と溶融プール断面の2次元形状を相関付ける機械学習フレームワークを提案する。
具体的には,光顕微鏡を用いて測定した単一ビーズオフ軸熱画像列と溶融プール断面輪郭との相関関係を確立するために,ハイブリッドCNN-Transformerアーキテクチャを用いる。
このアーキテクチャでは、ResNetモデルは熱画像に含まれる空間情報を潜伏ベクトルに埋め込むが、Transformerモデルは埋め込みベクトルのシーケンスを相関付け、時間情報を抽出する。
本フレームワークは, 地下融解プール構造の曲率をモデル化し, 解析的融解プールモデルと比較して高エネルギー密度モデルの性能を向上させることができる。
本モデルの性能は, 実験用メルトプール観測と比較し, 次元および幾何学的比較により評価した。
関連論文リスト
- vHeat: Building Vision Models upon Heat Conduction [63.00030330898876]
vHeatは、高い計算効率とグローバルな受容場の両方を同時に達成する、新しいビジョンバックボーンモデルである。
基本的な考え方は、画像パッチを熱源として概念化し、それらの相関の計算を熱エネルギーの拡散としてモデル化することである。
論文 参考訳(メタデータ) (2024-05-26T12:58:04Z) - Integrating Multi-Physics Simulations and Machine Learning to Define the Spatter Mechanism and Process Window in Laser Powder Bed Fusion [6.024307115154315]
本研究では, LPBFにおける多物理現象をシミュレートするために構築した高忠実度モデリングツールを用いて, スパッタ形成機構について検討した。
スパッタの挙動と生成を理解するため, 噴出時の特性を明らかにし, 生成源である溶融プールからの変動を評価する。
分類タスクの相関解析と機械学習(ML)アルゴリズムを用いて,スパッタとメルトプールの関係を評価した。
論文 参考訳(メタデータ) (2024-05-13T15:08:02Z) - Multi-fidelity surrogate with heterogeneous input spaces for modeling melt pools in laser-directed energy deposition [0.0]
MFモデリング(Multi-fidelity Modeling)は、様々なフィデリティソースからデータをインテリジェントにブレンドできる強力な統計手法である。
メルトプールモデルの階層をマージするためにMFサロゲートを使用する際の大きな課題は、入力空間における可変性である。
本稿では, 様々な複雑さのモデルを統合することで, 溶融プール形状を予測するためのMFサロゲート構築手法を提案する。
論文 参考訳(メタデータ) (2024-03-19T20:12:46Z) - Deep Equilibrium Diffusion Restoration with Parallel Sampling [120.15039525209106]
拡散モデルに基づく画像復元(IR)は、拡散モデルを用いて劣化した画像から高品質な(本社)画像を復元し、有望な性能を達成することを目的としている。
既存のほとんどの手法では、HQイメージをステップバイステップで復元するために長いシリアルサンプリングチェーンが必要であるため、高価なサンプリング時間と高い計算コストがかかる。
本研究では,拡散モデルに基づくIRモデルを異なる視点,すなわちDeqIRと呼ばれるDeQ(Deep equilibrium)固定点系で再考することを目的とする。
論文 参考訳(メタデータ) (2023-11-20T08:27:56Z) - Inexpensive High Fidelity Melt Pool Models in Additive Manufacturing
Using Generative Deep Diffusion [40.80426609561942]
レーザー粉末層融合(L-PBF)の欠陥は、しばしば溶融プールとして知られるレーザー近傍の溶融合金のメソスケールのダイナミクスによって生じる。
本研究では,確率的拡散フレームワークに基づく生成的深層学習モデルを構築し,低忠実度,粗粒度シミュレーション情報を高忠実度にマッピングする。
論文 参考訳(メタデータ) (2023-11-15T19:37:20Z) - Evaluation of Key Spatiotemporal Learners for Print Track Anomaly
Classification Using Melt Pool Image Streams [1.83192584562129]
本稿では,メルトプール画像の分類に適応可能な,先進的な深層学習モデルについて紹介する。
空間的ストリームと時間的ストリームと、繰り返し空間的ネットワークと、分解された3次元畳み込みニューラルネットワークから構成される2つのストリームネットワークについて検討する。
実世界のプロセスシナリオに根ざしたデータテンポラリ手法を用いて, 溶融プール画像データの摂動に曝露した場合の一般化能力について検討した。
論文 参考訳(メタデータ) (2023-08-28T19:31:53Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z) - Machine learning based in situ quality estimation by molten pool
condition-quality relations modeling using experimental data [14.092644790436635]
計測可能な溶融プール画像と温度データから相関関係を確立するための機械学習畳み込みニューラルネットワーク(CNN)モデルを開発した。
マルチモダリティネットワークは、カメラ画像と温度測定の両方を入力として受信し、対応するキャラクタリゼーション特性が得られる。
開発したモデルでは, 量的, 協調的品質推定・保証フレームワークを構築するために, 溶融プール条件品質関係マッピングが可能となる。
論文 参考訳(メタデータ) (2021-03-21T15:57:05Z) - Machine learning for rapid discovery of laminar flow channel wall
modifications that enhance heat transfer [56.34005280792013]
任意の, 平坦な, 非平坦なチャネルの正確な数値シミュレーションと, ドラッグ係数とスタントン数を予測する機械学習モデルを組み合わせる。
畳み込みニューラルネットワーク(CNN)は,数値シミュレーションのわずかな時間で,目標特性を正確に予測できることを示す。
論文 参考訳(メタデータ) (2021-01-19T16:14:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。