Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification
- URL: http://arxiv.org/abs/2404.17753v1
- Date: Sat, 27 Apr 2024 02:04:36 GMT
- Title: Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification
- Authors: Chao Yi, Lu Ren, De-Chuan Zhan, Han-Jia Ye,
- Abstract summary: We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
- Score: 54.96876797812238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: CLIP showcases exceptional cross-modal matching capabilities due to its training on image-text contrastive learning tasks. However, without specific optimization for unimodal scenarios, its performance in single-modality feature extraction might be suboptimal. Despite this, some studies have directly used CLIP's image encoder for tasks like few-shot classification, introducing a misalignment between its pre-training objectives and feature extraction methods. This inconsistency can diminish the quality of the image's feature representation, adversely affecting CLIP's effectiveness in target tasks. In this paper, we view text features as precise neighbors of image features in CLIP's space and present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts. This feature extraction method aligns better with CLIP's pre-training objectives, thereby fully leveraging CLIP's robust cross-modal capabilities. The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images. We introduce the Auto Text Generator(ATG) to automatically generate the required texts in a data-free and training-free manner. We apply CODER to CLIP's zero-shot and few-shot image classification tasks. Experiment results across various datasets and models confirm CODER's effectiveness. Code is available at:https://github.com/YCaigogogo/CVPR24-CODER.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - Finetuning CLIP to Reason about Pairwise Differences [52.028073305958074]
We propose an approach to train vision-language models such as CLIP in a contrastive manner to reason about differences in embedding space.
We first demonstrate that our approach yields significantly improved capabilities in ranking images by a certain attribute.
We also illustrate that the resulting embeddings obey a larger degree of geometric properties in embedding space.
arXiv Detail & Related papers (2024-09-15T13:02:14Z) - Optimizing CLIP Models for Image Retrieval with Maintained Joint-Embedding Alignment [0.7499722271664144]
Contrastive Language and Image Pairing (CLIP) is a transformative method in multimedia retrieval.
CLIP typically trains two neural networks concurrently to generate joint embeddings for text and image pairs.
This paper addresses the challenge of optimizing CLIP models for various image-based similarity search scenarios.
arXiv Detail & Related papers (2024-09-03T14:33:01Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Cross-Modal Retrieval Meets Inference:Improving Zero-Shot Classification
with Cross-Modal Retrieval [29.838375158101027]
Contrastive language-image pre-training (CLIP) has demonstrated remarkable zero-shot classification ability.
We propose X-MoRe, a novel inference method comprising two key steps: (1) cross-modal retrieval and (2) modal-confidence-based ensemble.
X-MoRe demonstrates robust performance across a diverse set of tasks without the need for additional training.
arXiv Detail & Related papers (2023-08-29T13:02:35Z) - Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one.
We use features from the OpenAI CLIP model to tackle the considered task.
We train a Combiner network that learns to combine the image-text features integrating the bimodal information.
arXiv Detail & Related papers (2023-08-22T15:03:16Z) - Zero-shot Image Captioning by Anchor-augmented Vision-Language Space
Alignment [23.072180427273544]
We discuss that directly employing CLIP for zero-shot image captioning relies more on the textual modality in context and largely ignores the visual information.
To address this, we propose Cross-modal Language Models (CLMs) to facilitate unsupervised cross-modal learning.
Experiments on MS COCO and Flickr 30K validate the promising performance of proposed approach in both captioning quality and computational efficiency.
arXiv Detail & Related papers (2022-11-14T11:12:19Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Fine-grained Image Captioning with CLIP Reward [104.71533106301598]
We propose using CLIP, a multimodal encoder trained on huge image-text pairs from web, to calculate multimodal similarity and use it as a reward function.
We also propose a simple finetuning strategy of the CLIP text encoder to improve grammar that does not require extra text annotation.
In experiments on text-to-image retrieval and FineCapEval, the proposed CLIP-guided model generates more distinctive captions than the CIDEr-optimized model.
arXiv Detail & Related papers (2022-05-26T02:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.