Non-Contrastive Learning Meets Language-Image Pre-Training
- URL: http://arxiv.org/abs/2210.09304v1
- Date: Mon, 17 Oct 2022 17:57:46 GMT
- Title: Non-Contrastive Learning Meets Language-Image Pre-Training
- Authors: Jinghao Zhou, Li Dong, Zhe Gan, Lijuan Wang, Furu Wei
- Abstract summary: We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
- Score: 145.6671909437841
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Contrastive language-image pre-training (CLIP) serves as a de-facto standard
to align images and texts. Nonetheless, the loose correlation between images
and texts of web-crawled data renders the contrastive objective data
inefficient and craving for a large training batch size. In this work, we
explore the validity of non-contrastive language-image pre-training (nCLIP),
and study whether nice properties exhibited in visual self-supervised models
can emerge. We empirically observe that the non-contrastive objective nourishes
representation learning while sufficiently underperforming under zero-shot
recognition. Based on the above study, we further introduce xCLIP, a
multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP
in enhancing feature semantics. The synergy between two objectives lets xCLIP
enjoy the best of both worlds: superior performance in both zero-shot transfer
and representation learning. Systematic evaluation is conducted spanning a wide
variety of downstream tasks including zero-shot classification, out-of-domain
classification, retrieval, visual representation learning, and textual
representation learning, showcasing a consistent performance gain and
validating the effectiveness of xCLIP.
Related papers
- TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - Semantic Compositions Enhance Vision-Language Contrastive Learning [46.985865191341944]
We show that the zero-shot classification and retrieval capabilities of CLIP-like models can be improved significantly through the introduction of semantically composite examples during pretraining.
Our method fuses the captions and blends 50% of each image to form a new composite sample.
The benefits of CLIP-C are particularly pronounced in settings with relatively limited pretraining data.
arXiv Detail & Related papers (2024-07-01T15:58:20Z) - Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification [54.96876797812238]
We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
arXiv Detail & Related papers (2024-04-27T02:04:36Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP [84.90129481336659]
We study transferrable representation learning underlying CLIP and demonstrate how features from different modalities get aligned.
Inspired by our analysis, we propose a new CLIP-type approach, which achieves better performance than CLIP and other state-of-the-art methods on benchmark datasets.
arXiv Detail & Related papers (2023-10-02T06:41:30Z) - Composed Image Retrieval using Contrastive Learning and Task-oriented
CLIP-based Features [32.138956674478116]
Given a query composed of a reference image and a relative caption, the Composed Image Retrieval goal is to retrieve images visually similar to the reference one.
We use features from the OpenAI CLIP model to tackle the considered task.
We train a Combiner network that learns to combine the image-text features integrating the bimodal information.
arXiv Detail & Related papers (2023-08-22T15:03:16Z) - ProtoCLIP: Prototypical Contrastive Language Image Pretraining [12.067061175987075]
Prototypical Contrastive Language Image Pretraining (ProtoCLIP) is introduced to enhance such grouping.
ProtoCLIP sets up prototype-level discrimination between image and text spaces, which efficiently transfers higher-level structural knowledge.
ProtoCLIP is trained with an online episodic training strategy, which makes it can be scaled up to unlimited amounts of data.
arXiv Detail & Related papers (2022-06-22T11:55:53Z) - Robust Cross-Modal Representation Learning with Progressive
Self-Distillation [7.676408770854477]
The learning objective of vision-language approach of CLIP does not effectively account for the noisy many-to-many correspondences found in web-harvested image captioning datasets.
We introduce a novel training framework based on cross-modal contrastive learning that uses progressive self-distillation and soft image-text alignments to more efficiently learn robust representations from noisy data.
arXiv Detail & Related papers (2022-04-10T03:28:18Z) - CRIS: CLIP-Driven Referring Image Segmentation [71.56466057776086]
We propose an end-to-end CLIP-Driven Referring Image framework (CRIS)
CRIS resorts to vision-language decoding and contrastive learning for achieving the text-to-pixel alignment.
Our proposed framework significantly outperforms the state-of-the-art performance without any post-processing.
arXiv Detail & Related papers (2021-11-30T07:29:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.